Events Archive

Apr
30
2014
Biological flows are vital for the conservation of life and indispensable commodity of living organisms. Morphological structures of living organisms and biological flow phenomena in...
Apr
24
2014
Given that many diverse astrophysical systems are susceptible to relativistic hydromagnetic turbulence, it is surprising how little is presently known about how they manifest chaotic flow. Of primary interest is to establish a basic understanding of how the small-scale turbulent dynamo, whereby kinetic energy of the flow is converted into magnetic energy, operates in these systems. This process is thought to be instrumental in both stellar and galactic magnetogenesis, and may also be at work in relativistic astrophysical jets and their central engines. ...
Apr
21
2014
The fractional quantum Hall effect (FQHE) states in the second Landau level have attracted growing interests and intensive theoretical and experimental investigations due to them possibly being non-Abelian states. Recently, we systematically examined the spin polarization of the FQHE states in a series of high quality, low density two dimensional electron systems. Evidence of spin transition was observed, suggesting a more complicated nature of the FQHE ground states in the second Landau level.
Apr
16
2014
We utilize electroconvecting liquid crystal samples as a test bed from non-equilibrium driven systems. I will discuss results from the application of a novel mathematical analysis that incorporates time-delay embedding and diffusion maps to elucidate the underlying geometry in this system. This analysis permits the discrimination of different dynamical states from empirical data and is used to demonstrate multistability in this system. In addition we investigate the effects of an abrupt transition to defect turbulence on the structure and energy flow in this system.
Apr
15
2014
We present and discuss, in the context of the drug discovery pipeline, recent computational developments that enable the virtual screening of massive databases of chemicals against a large number of protein structures. We present "ensemble docking" applications of virtual screening in multiple protein structures that identify new protein ligands and explore biochemical pathways. We also discuss fundamental and challenging aspects of these very large virtual screening approaches.
Apr
14
2014
Electrons in free space have a well-defined mass. Recently, a new class of materials called topological insulators were discovered, where the low energy electrons have zero mass. In fact, these electrons can be described by the same massless Dirac equation that is used to describe relativistic particles travelling close to the speed of light. In this talk I will describe our recent experimental and theoretical investigations of Topological Crystalline Insulators (TCIs) [1]. TCIs belong to the newest category of topological materials...