Experts in the News

To request a media interview, please reach out to School of Physics experts using our faculty directory, or contact Jess Hunt-Ralston, College of Sciences communications director. A list of faculty experts and research areas across the College of Sciences at Georgia Tech is also available to journalists upon request.

After a three-year hiatus, scientists in the U.S. have just turned on detectors capable of measuring gravitational waves — tiny ripples in space itself that travel through the universe. Unlike light waves, gravitational waves are nearly unimpeded by the galaxies, stars, gas, and dust that fill the universe. This means that by measuring gravitational waves, astrophysicists can peek directly into the heart of some of these most spectacular phenomena in the universe. Since 2020, the Laser Interferometric Gravitational-Wave Observatory — commonly known as LIGO— has been sitting dormant while it underwent some exciting upgrades. These improvements will significantly boost the sensitivity of LIGO and should allow the facility to observe more-distant objects that produce smaller ripples in spacetime. Faculty and students in the School of Physics and Georgia Tech's Center for Relativistic Astrophysics were part of the LIGO Scientific Collaboration when the observatory made the first direct observation of gravitational waves. Laura Cadonati, professor in the School of Physics and associate dean for Research in the College of Sciences, served as LIGO deputy spokesperson and was on its data analysis team.

Inverse 2023-05-28T00:00:00-04:00

A team of mechanical engineering students and alumni at Georgia Tech began developing and testing ForageFeeder, a $400 machine partly inspired by deer feeders that can disperse gorillas’ their meals at random intervals and locations throughout the day. Much like modern humans, zoo animals frequently deal with obesity due to a lack of activity. Tools and techniques such as the ForageFeeder not only promote Zoo Atlanta gorillas’ movement, but better simulate their natural foraging world. David Hu, professor in the School of Biological Sciences, the George W. Woodruff School of Mechanical Engineering, and the School of Physics, was faculty advisor for this project. (Read more about the story here.) 

Popular Science 2023-05-26T00:00:00-04:00

A small but growing group of researchers is fascinated by an organ we often take for granted. We rarely think about how agile our own tongue needs to be to form words or avoid being bitten while helping us taste and swallow food. But that’s just the start of the tongue’s versatility across the animal kingdom. Without tongues, few if any terrestrial vertebrates could exist. The first of their ancestors to slither out of the water some 400 million years ago found a buffet stocked with new types of foods, but it took a tongue to sample them. The range of foods available to these pioneers broadened as tongues diversified into new, specialized forms — and ultimately took on functions beyond eating. This examination of how animal tongues shaped biological diversity includes research from David Hu, professor in the School of Biological Sciences and the School of Physics

Science 2023-05-25T00:00:00-04:00

NPR's Ari Shapiro talks with Regina Barber and Emily Kwong, hosts of the Short Wave podcast, about the top science stories of the week, including the mysteries of multicellular organisms as researched by William Ratcliff, associate professor and co-director of the Interdisciplinary Ph.D. in Quantitative Biosciences program in the School of Biological Sciences. Ratcliff and several colleagues, including research scientist Ozan Bozdag, used snowflake yeast to initiate the first long-term evolution experiment aimed at evolving new kinds of multicellular organisms from single-celled ancestors in the lab. Other College of Sciences researchers involved include Seyed Alireza Zamani Dahaj, computational biologist, Interdisciplinary Graduate Program in Quantitative Biosciences, and the School of PhysicsThomas C. Day, Ph.D. candidate, School of Physics, and Peter Yunker, associate professor, School of Physics.  Anthony J. Burnetti, research scientist; Penelope Kahn, research technician; Dung T. Lac, research technician; Kai Tong, postdoctoral scholar; and Peter Conlin, postdoctoral scholar, are all from the School of Biological Sciences. (This segment was also run on Connecticut Public Radio and Georgia Public Broadcasting.) 

National Public Radio 2023-05-18T00:00:00-04:00

The Atlantic's Pulitzer Prize-winning staff writer Ed Yong writes about the unique snowflake yeast experiment conducted by Georgia Tech researchers that shows how multicellular organisms might have evolved from single-celled ancestors. The study, published recently in Nature, provided new insight into how "that change from micro to macro, from one cell to many, was one of the most pivotal evolutionary journeys in Earth’s history." William Ratcliff, associate professor in the School of Biological Sciences and co-director of the Interdisciplinary Ph.D. in Quantitative Biosciences program led the research team. Other researchers include Ozan Bozdag, research scientist, School of Biological Sciences; Seyed Alireza Zamani Dahaj, computational biologist, Interdisciplinary Graduate Program in Quantitative Biosciences, and the School of PhysicsThomas C. Day, Ph.D. candidate, School of Physics, and Peter Yunker, associate professor, School of Physics.  Anthony J. Burnetti, research scientist; Penelope Kahn, research technician; Dung T. Lac, research technician; Kai Tong, postdoctoral scholar; and Peter Conlin, postdoctoral scholar, are all from the School of Biological Sciences. ((Atlantic subscription required; read more about the research here.)

The Atlantic 2023-05-12T00:00:00-04:00

A research team from Georgia Tech is one of five chosen by NASA to collaborate on lunar science and lunar sample analysis research to support future exploration of the Moon as part of the agency’s Solar System Exploration Research Virtual Institute (SSERVI). SSERVI will support each of the new teams for five years at about $1.5 million per year, jointly funded by NASA’s Science Mission Directorate and Exploration Systems Development Mission Directorate. The Center for Lunar Environment and Volatile Exploration Research (CLEVER) is led by Thomas Orlando, professor in the School of Chemistry and Biochemistry with an adjunct appointment in the School of Physics, The team will characterize the lunar environment and volatile inventories required for near-term sustained human exploration of the Moon. Orlando is principal investigator for another lunar-related research team, Radiation Effects on Volatiles and Exploration of Asteroids and Lunar Surfaces (REVEALS), which is also a part of SSERVI. (Read more about this story here. This story was also covered at Newswise and SpaceRef.com)

NASA 2023-05-11T00:00:00-04:00

Precisely how multicellular organisms evolved from single-celled ancestors remains poorly understood. The transition happened hundreds of millions of years ago, and early multicellular species are largely lost to extinction. To investigate how multicellular life evolves from scratch, researchers from the Georgia Institute of Technology decided to take evolution into their own hands. Led by William Ratcliff, associate professor in the School of Biological Sciences and director of the Interdisciplinary Graduate Program in Quantitative Biosciences, a team of researchers has initiated the first long-term evolution experiment aimed at evolving new kinds of multicellular organisms from single-celled ancestors in the lab. In this case, the cells are snowflake yeast, and they grew so large they could be seen with the naked eye. Other researchers include Ozan Bozdag, research scientist, School of Biological Sciences; Seyed Alireza Zamani Dahaj, computational biologist, Interdisciplinary Graduate Program in Quantitative Biosciences, and the School of Physics; Thomas C. Day, Ph.D. candidate, School of Physics, and Peter Yunker, associate professor, School of Physics.  Anthony J. Burnetti, research scientist; Penelope Kahn, research technician; Dung T. Lac, research technician; Kai Tong, postdoctoral scholar; and Peter Conlin, postdoctoral scholar, are all from the School of Biological Sciences. (This story was also covered at ScienceAlert, NPRInteresting Engineering, New AtlasNewswise, and Tech Explorist. Read more about the research here.)

The New York Times 2023-05-10T00:00:00-04:00

When traveling on rough and unpredictable roads, the more legs the better — at least for robots. Balancing on two legs is somewhat hard; on four legs, it’s slightly easier. But what if you had many many legs, like a centipede? Researchers at Georgia Institute of Technology have found that by giving a robot multiple, connected legs, it allows the machine to easily clamber over landscapes with cracks, hills, and uneven surfaces without the need for extensive sensor systems. Their results are published in a study this week in the journal Science. The researchers from the School of Physics include Daniel Goldman, Dunn Family Professor, and Baxi Chong, postdoctoral scholar and a Ph.D. graduate student in the Quantitative Biosciences program. Two scientists from the School of Mathematics involved in the study are Grigoriy Blekherman, professor, and Daniel Irvine, postdoctoral scholar. And three members of Goldman's Complex Rheology and Biomechanics (CRAB) Lab are study co-authors: Ph.D. graduate students Juntao He and Tianyu Wang, and Daniel Soto, postgraduate research assistant. (This story is also covered in QHubo NewsCBC RadioTech Briefs, New Atlas, the BBC, and ScienceDaily. Popular Science also mentions the Georgia Tech research in its story on a separate multi-legged robot developed by researchers in Japan. And Baxi Chong wrote about the research in The Conversation which was reprinted in RoboHub.)

Popular Science 2023-05-08T00:00:00-04:00

On May the Fourth, a.k.a. Star Wars Day, Discover took a look at the science behind Georgia Lucas' pop culture phenomenon. It cited a previous Georgia Tech story that quizzed faculty about various aspects of the movie franchise, including A. Nepomuk Otte, professor in the School of Physics, and his argument that The Force ignores a central pillar of physics by acting in a one-sided manner, as when Yoda raised Luke's X-wing fighter from the Dagobah swamp. “Didn't we learn from physics classes about Newton’s third law?” Otte said in the story. “For every action, there is an equal and opposite reaction. So why doesn't the little fella get squished like a mosquito?” 

Discover 2023-05-04T00:00:00-04:00

Blinking is crucial for the eye. It's how animals clean their eyes, protect them, and even communicate. But how and why did blinking originate? Researchers at the Georgia Institute of Technology, Seton Hill University, and Pennsylvania State University studied the mudskipper, an amphibious fish that spends most of its day on land, to better understand why blinking is a fundamental behavior for life on land. By comparing the anatomy and behavior of mudskippers to the fossil record of early tetrapods, the researchers argue that blinking emerged in both groups as an adaptation to life on land. One  of the researchers, Brett Aiello, an assistant professor of biology at Seton Hill University, is a former postdoctoral fellow in the Agile Systems Lab at Georgia Tech. Saad Bhamla, assistant professor in the School of Chemical and Biomolecular Engineering, is a co-author of the study.  (This story is also covered in Earth.comSciTechDaily and the Latrobe Bulletin.) 

ScienceDaily 2023-04-23T00:00:00-04:00

This story about an AI enhancement of the famous 2018 photo of the first-ever image of a black hole — captured by the Event Horizon Telescope featuring EHT founding members and School of Physics professors Feryal Ozel (also school chair) and Dimitrios Psaltis — is also covered in Scientific American, Ars Technica, The Washington Post, Phys.org, NPR, Sky News, MSN, USA Today, Yahoo!News, CBS News, Space.com, The Associated Press,   LiveScience, Smithsonian Magazine, Economic Times, Voice of America News, and UK Daily Mail

The New York Times 2023-04-13T00:00:00-04:00

The 2019 release of the first image of a black hole, captured by the Event Horizon Telescope (EHT), was hailed as a significant scientific achievement. But truth be told, it was a bit blurry — or, as one astrophysicist involved in the effort called it, a "fuzzy orange donut." Scientists on Thursday unveiled a new and improved image of this black hole — a behemoth at the center of a nearby galaxy — mining the same data used for the earlier one but improving its resolution by employing image reconstruction algorithms to fill in gaps in the original telescope observations. The use of machine learning to improve the photo is detailed in a study in the Astrophysical Journal Letters. Two professors in the School of Physics who are EHT founding members — Feryal Ozel, who is also school chair, and Dimitrios Psaltis — are co-authors of the study. (This story was also covered in Space DailyScienceDaily and the Calgary Herald.)

Reuters 2023-04-13T00:00:00-04:00

Events

Apr 21

School of Physics Spring Colloquium Series-Dr. Lia Medeiros

Lia Medeiros(Univ. of Wisconsin Milwaukee) EHT images of black holes: what we've learned from them and how we can improve them

Apr 22

Systems Matter Seminar | Materials-Driven Strategies for Translational Bioelectrical Interfaces

Featuring Bozhi Tian, professor at the University of Chicago department of Chemistry

Apr 23

Entanglement in Tensor Networks- Dr. Andrej Gendiar, School of Physics CM/AMO/Quantum Seminar

Tensor Networks are special classes of variational quantum states typically applied to study strongly correlated many-body systems.

Apr 25

Fossil Friday

Come join the Spatial Ecology and Paleontology Lab for Fossil Fridays! Become a fossil hunter and help discover how vertebrate communities have changed through time.

May 01

Observatory Public Night

On the grounds between the Howey and Mason Buildings, several telescopes are typically set up for viewing, and visitors are invited to bring their own telescope, as well.

May 08

C-PIES Summer Cookout

Join fellow College of Sciences faculty, staff, students, and alumni for food, games, and fun.

Experts in the News

Postdoctoral researcher Aniruddha Bhattacharya and School of Physics Professor Chandra Raman have introduced a novel way to generate entanglement between photons – an essential step in building scalable quantum computers that use photons as quantum bits (qubits). Their research, published in Physical Review Letters, leverages a mathematical concept called non-Abelian quantum holonomy to entangle photons in a deterministic way without relying on strong nonlinear interactions or irrevocably probabilistic quantum measurements.

Physics World 2025-04-09T00:00:00-04:00

Peter Yunker, associate professor in the School of Physics, reflects on the results of new experiments which show that cells pack in increasingly well-ordered patterns as the relative sizes of their nuclei grow.

“This research is a beautiful example of how the physics of packing is so important in biological systems,” states Yunker. He says the researchers introduce the idea that cell packing can be controlled by the relative size of the nucleus, which “is an accessible control parameter that may play important roles during development and could be used in bioengineering.”

Physics Magazine 2025-03-21T00:00:00-04:00

School of Physics Professor Ignacio Taboada provided brief commentary on KM3NeT, a new underwater neutrino experiment that has detected what appears to be the highest-energy cosmic neutrino observed to date.

“This is clearly an interesting event. It is also very unusual,” said Taboada, spokesperson for the IceCube experiment in Antarctica. IceCube, which has a similar detector-array design as KM3NeT but is encased in ice rather than water, has detected neutrinos with energies as high as 10 PeV, but nothing in 100 PeV range. “IceCube has worked for 14 years, so it’s weird that we don’t see the same thing,” Taboada said. Taboada is not involved in the KM3Net experiment. 

The KM3NeT team is aware of this weirdness. They compared the KM3-230213A event to upper limits on the neutrino flux given by IceCube and the Pierre Auger cosmic-ray experiment in Argentina. Taking those limits as given, they found that there was a 1% chance of detecting a 220-PeV neutrino during KM3NeT’s preliminary (287-day) measurement campaign. 

This also appeared in Scientific American and Smithsonian Magazine.

Physics Magazine 2025-02-12T00:00:00-05:00

Georgia Tech researchers from the School of Chemistry and Biochemistry, the School of Earth and Atmospheric Sciences, and the School of Physics including Regents' Professor Thomas Orlando, Assistant Professor Karl Lang, and post-doctoral researcher Micah Schaible are among the authors of a paper recently published in Scientific Reports.

Researchers from the University of Georgia and Georgia Tech demonstrated that space weathering alterations of the surface of lunar samples at the nanoscale may provide a mechanism to distinguish lunar samples of variable surface exposure age.

Nature Scientific Reports 2025-01-02T00:00:00-05:00

Despite the fact that Antarctica is extraordinarily difficult to get to, astronomers love it and have chosen it as the location for the IceCube Neutrino Observatory. What could possibly make such a remote location so desirable for space science that it’s worth all that trouble? 

In this article, scientists including Georgia Tech's Brandon Pries from the School of Physics explain why the South Pole is such a hotspot for astronomers. The answer? At the South Pole, you can best view neutrons and neutrinos in space. 

Pries compares the benefits of the South Pole to the North Pole. “The North Pole is more difficult because ice coverage there fluctuates,” explains Pries. “There is a foundation of bedrock underneath Antarctica that serves as a solid base for the IceCube instruments.” This bedrock is also why Antarctica is home to the South Pole Telescope, a radio observatory that helped take the first ever photo of a black hole.

Popular Science 2024-09-05T00:00:00-04:00

Georgia Tech researchers from the School of Physics including fifth-year PhD student Mengqi Huang and Assistant Professor Chunhui Rita Du are among the authors of a paper recently published in Nature Physics. Researchers from six universities and Oak Ridge National Laboratory showed that strong quantum fluctuations can stabilize an unconventional magnetic phase after destroying a more conventional one.

Nature Physics 2024-08-26T00:00:00-04:00