To request a media interview, please reach out to School of Physics experts using our faculty directory, or contact Jess Hunt-Ralston, College of Sciences communications director. A list of faculty experts and research areas across the College of Sciences at Georgia Tech is also available to journalists upon request.
This roundup of some of the most unique excrement in the animal kingdom, showcasing the fascinating diversity of animal waste, includes a 2018 Georgia Tech study of how wombats manage to produce square-shaped feces. The study's authors include David Hu, professor in the School of Biological Sciences and the George W. Woodruff School of Mechanical Engineering, with an adjunct appointment in the School of Physics. As it turns out, the elastic nature of the marsupial's intestinal walls is a key factor.
Interesting Engineering 2023-12-01T00:00:00-05:00Blimps are indeed part of this "Innovations" roundup, but it's the collaborative abilities of army ants that have led engineers from Northwestern University and the New Jersey Institute of Technology to speculate that the insects' behavioral principles and brains could one day be used to program swarms of robots. David Hu, professor in the School of Biological Sciences and the George W. Woodruff School of Mechanical Engineering (with an adjunct appointment in the School of Physics), is quoted regarding his research on fire ant raft constructions during flooding, comparing the insects to neurons in one large brain.
Mastercard Newsroom 2023-11-30T00:00:00-05:00Ever wondered why your dog’s back-and-forth shaking is so effective at getting you soaked? Or how bugs, birds, and lizards can run across water—but we can’t? Or how about why cockroaches are so darn good at navigating in the dark? Those are just a few of the day-to-day mysteries answered in the new book How to Walk on Water and Climb Up Walls: Animal Movement and the Robots of the Future, by David Hu, professor in the School of Biological Sciences and the George W. Woodruff School of Mechanical Engineering, with an adjunct appointment in the School of Physics. The book answers questions you probably won’t realize you even had, but they’re questions with serious answers that span the worlds of physics, fluid mechanics, and biology. Throughout the book, Hu demonstrates the extraordinary value day-to-day curiosity brings to science.
WNYC Science Friday 2023-11-27T00:00:00-05:00Georgia Tech scientists will soon have another way to search for neutrinos, those hard-to-detect, high-energy particles speeding through the cosmos that hold clues to massive particle accelerators in the universe—if researchers can find them. "The detection of a neutrino source or even a single neutrino at the highest energies is like finding a holy grail," says Nepomuk Otte, professor in the School of Physics. Otte is the principal investigator for the Trinity Demonstrator telescope that was recently built by his group and collaborators, and was designed to detect neutrinos after they get stopped within the Earth.
Science X 2023-11-18T00:00:00-05:00For the undergraduate students who interned in quantum science laboratories and research groups as part of the second cohort of the Chicago Quantum Exchange’s (CQE) Open Quantum Initiative (OQI) Fellowship Program, this summer was a chance to immerse themselves in a fast-growing field — one that is driving the development of cutting-edge technology by harnessing the properties of nature’s smallest particles. Eight of the 18 fellows contributed to Q-NEXT, a U.S. Department of Energy (DOE) National Quantum Information Science Research Center led by DOE’s Argonne National Laboratory. One of the fellows is Anais El Akkad in the School of Physics, whose research this summer focused on studying the phenomenon of superradiance in a rare-earth doped crystal, which has potential applications to the development of quantum memories.
Argonne National Laboratory 2023-11-16T00:00:00-05:00The American Physical Society (APS) recently honored five MIT community members for their contributions to physics. The recipients include MIT Research Laboratory of Electronics postdoctoral scholar Chao Li, who received his Ph.D. from the School of Physics in 2022. He was awarded the Outstanding Doctoral Thesis Research in Beam Physics Award from the APS.
MIT News 2023-11-16T00:00:00-05:00Isabella Muratore at the New Jersey Institute of Technology says studying army ants comes with certain occupational hazards, like their very aggressive nature. But what's truly remarkable is when the ants encounter obstacles — such as a gap between leaves or branches — they build living bridges out of their bodies, hooking themselves together like a barrel of monkeys. This story includes comments from David Hu, professor in the School of Biological Sciences and the George W. Woodruff School of Mechanical Engineering, with an adjunct appointment in the School of Physics. Hu has studied how fire ants use their bodies to build rafts. He says this type of work reveals how ants make collective decisions, which could have implications for controlling swarms of robots. (This story was also covered on Houston Public Media, Georgia Public Broadcasting, and National Public Radio.)
Alabama Public Radio 2023-11-14T00:00:00-05:00A new computer simulation of the early universe has been built by researchers, and it closely matches data obtained with the James Webb Space Telescope (JWST). The results, which were presented in The Open Journal of Astrophysics, were obtained by Maynooth University and Georgia Tech researchers. They demonstrate that the data obtained with JWST are consistent with theoretical expectations. The team’s “Renaissance simulations” are a set of extremely complex computer models of galaxy formation in the early universe. The School of Physics researchers are John Wise, Professor and Director of the Center for Relativistic Astrophysics (CRA), and Samantha Hardin, graduate student. (This study was also covered at CityLife, Silicon Republic, SciTechDaily, Phys.org and List23.)
AZoQuantum 2023-10-27T00:00:00-04:00This fall, the Institute will launch a foundational, interdisciplinary program to lead in research related to neuroscience, neurotechnology, and society. The Neuro Next Initiative is the result of the growth of GTNeuro, a grassroots effort over many years that has led in the hiring of faculty studying the brain and the creation of the B.S. in neuroscience in the College of Sciences, and contributed to exciting neuro-related research and education at Georgia Tech. Guided by faculty members Christopher Rozell, professor and Julian T. Hightower Chair in the School of Electrical and Computer Engineering; Simon Sponberg, Dunn Family Associate Professor of Physics and Biological Sciences; and Jennifer S. Singh, associate professor in the School of History and Sociology, the Neuro Next Initiative at Georgia Tech will lead the development of a community that supports collaborative research, unique educational initiatives, and public engagement in this critical field.
India Education Diary 2023-10-23T00:00:00-04:00An annular "ring of fire" eclipse will stretch from Oregon to Texas next Saturday, October 14. During this type of eclipse, the Moon is near its farthest point from Earth, so it does not completely cover the Sun. The Moon appears as a dark disk on top of a larger, bright sun. In Georgia, we will see a partial solar eclipse. James Sowell, principal academic professional in the School of Physics and director of the Georgia Tech Observatory, said over the three-hour event the sun will take on a different appearance. "For those of us in Atlanta, it’s a little more than 50 percent. So you’d have the disk of the sun, and part of it would be blocked out. So you would first see a little blocked out, and ultimately about 50 percent... The sun would be a crescent and then the moon would work its way out," Sowell said. If you want to view the eclipse, you must do so safely. You'll need special protection. Special solar-safe glasses can be purchased online, which are much, much stronger than a normal pair of sunglasses. (11Alive also spoke with Sowell on Oct. 12)
11Alive WXIA 2023-10-07T00:00:00-04:00The World Health Organization has identified antimicrobial resistance as a worldwide concern because most clinical antibiotics are no longer effective against certain pathogenic bacteria. Antibiotics work by targeting specific parts of a bacteria cell, such as the cell wall or its DNA. Bacteria can become resistant to antibiotics in a number of ways, including by developing efflux pumps — proteins that are located on the surface of the bacteria cell. When an antibiotic enters the cell, the efflux pump pumps it out of the cell before it can reach its target so that the antibiotic is never able to kill the bacteria. However, in a new study published in Nature Communications, scientists say they've found a new class of molecules that inhibit the efflux pump and make the antibiotic effective again. The researchers include Katie M. Kuo, Ph.D. scholar in the School of Chemistry and Biochemistry, and James C. Gumbart, professor in the School of Chemistry and Biochemistry with an adjunct appointment in the School of Physics.
SciTechDaily 2023-10-06T00:00:00-04:00Some insects can flap their wings so rapidly that it’s impossible for instructions from their brains to entirely control the behaviour. Building tiny flapping robots has helped researchers shed light on how they evolved to do this. For some insects, including mosquitoes, their brain signals and flapping are out of sync. After the initial signal to contract, the insects’ muscles undergo additional contract-relax cycles before they even receive another impulse from the brain. This so-called “asynchronous” flight allows them to flap their wings at exceptionally high rates. Several researchers from Georgia Tech set out to study the evolutionary history of this form of flight. Those researchers include Simon Sponberg, Dunn Family Associate Professor in the School of Physics and the School of Biological Sciences; Brett Aiello, former postdoctoral scholar in Sponberg's Agile Systems Lab; Ethan Wold, Ph.D. scholar in the School of Biological Sciences and the Quantitative Biosciences Graduate Program; and Jeff Gau, Ph.D. scholar in the George W. Woodruff School of Mechanical Engineering and the Interdisciplinary Bioengineering Graduate Program. (This research was also covered at India Education Diary, ArsTechnica, UC San Diego, Earth.com and Phys.org.)
New Scientist 2023-10-04T00:00:00-04:00- ‹ previous
- 4 of 23
- next ›
Events
School of Physics Spring Colloquium Series-Dr. Lia Medeiros
Lia Medeiros(Univ. of Wisconsin Milwaukee) EHT images of black holes: what we've learned from them and how we can improve them
Systems Matter Seminar | Materials-Driven Strategies for Translational Bioelectrical Interfaces
Featuring Bozhi Tian, professor at the University of Chicago department of Chemistry
Entanglement in Tensor Networks- Dr. Andrej Gendiar, School of Physics CM/AMO/Quantum Seminar
Tensor Networks are special classes of variational quantum states typically applied to study strongly correlated many-body systems.
Fossil Friday
Come join the Spatial Ecology and Paleontology Lab for Fossil Fridays! Become a fossil hunter and help discover how vertebrate communities have changed through time.
Observatory Public Night
On the grounds between the Howey and Mason Buildings, several telescopes are typically set up for viewing, and visitors are invited to bring their own telescope, as well.
C-PIES Summer Cookout
Join fellow College of Sciences faculty, staff, students, and alumni for food, games, and fun.
Experts in the News
Postdoctoral researcher Aniruddha Bhattacharya and School of Physics Professor Chandra Raman have introduced a novel way to generate entanglement between photons – an essential step in building scalable quantum computers that use photons as quantum bits (qubits). Their research, published in Physical Review Letters, leverages a mathematical concept called non-Abelian quantum holonomy to entangle photons in a deterministic way without relying on strong nonlinear interactions or irrevocably probabilistic quantum measurements.
Physics World 2025-04-09T00:00:00-04:00Peter Yunker, associate professor in the School of Physics, reflects on the results of new experiments which show that cells pack in increasingly well-ordered patterns as the relative sizes of their nuclei grow.
“This research is a beautiful example of how the physics of packing is so important in biological systems,” states Yunker. He says the researchers introduce the idea that cell packing can be controlled by the relative size of the nucleus, which “is an accessible control parameter that may play important roles during development and could be used in bioengineering.”
Physics Magazine 2025-03-21T00:00:00-04:00School of Physics Professor Ignacio Taboada provided brief commentary on KM3NeT, a new underwater neutrino experiment that has detected what appears to be the highest-energy cosmic neutrino observed to date.
“This is clearly an interesting event. It is also very unusual,” said Taboada, spokesperson for the IceCube experiment in Antarctica. IceCube, which has a similar detector-array design as KM3NeT but is encased in ice rather than water, has detected neutrinos with energies as high as 10 PeV, but nothing in 100 PeV range. “IceCube has worked for 14 years, so it’s weird that we don’t see the same thing,” Taboada said. Taboada is not involved in the KM3Net experiment.
The KM3NeT team is aware of this weirdness. They compared the KM3-230213A event to upper limits on the neutrino flux given by IceCube and the Pierre Auger cosmic-ray experiment in Argentina. Taking those limits as given, they found that there was a 1% chance of detecting a 220-PeV neutrino during KM3NeT’s preliminary (287-day) measurement campaign.
This also appeared in Scientific American and Smithsonian Magazine.
Physics Magazine 2025-02-12T00:00:00-05:00Georgia Tech researchers from the School of Chemistry and Biochemistry, the School of Earth and Atmospheric Sciences, and the School of Physics including Regents' Professor Thomas Orlando, Assistant Professor Karl Lang, and post-doctoral researcher Micah Schaible are among the authors of a paper recently published in Scientific Reports.
Researchers from the University of Georgia and Georgia Tech demonstrated that space weathering alterations of the surface of lunar samples at the nanoscale may provide a mechanism to distinguish lunar samples of variable surface exposure age.
Nature Scientific Reports 2025-01-02T00:00:00-05:00Despite the fact that Antarctica is extraordinarily difficult to get to, astronomers love it and have chosen it as the location for the IceCube Neutrino Observatory. What could possibly make such a remote location so desirable for space science that it’s worth all that trouble?
In this article, scientists including Georgia Tech's Brandon Pries from the School of Physics explain why the South Pole is such a hotspot for astronomers. The answer? At the South Pole, you can best view neutrons and neutrinos in space.
Pries compares the benefits of the South Pole to the North Pole. “The North Pole is more difficult because ice coverage there fluctuates,” explains Pries. “There is a foundation of bedrock underneath Antarctica that serves as a solid base for the IceCube instruments.” This bedrock is also why Antarctica is home to the South Pole Telescope, a radio observatory that helped take the first ever photo of a black hole.
Popular Science 2024-09-05T00:00:00-04:00Georgia Tech researchers from the School of Physics including fifth-year PhD student Mengqi Huang and Assistant Professor Chunhui Rita Du are among the authors of a paper recently published in Nature Physics. Researchers from six universities and Oak Ridge National Laboratory showed that strong quantum fluctuations can stabilize an unconventional magnetic phase after destroying a more conventional one.
Nature Physics 2024-08-26T00:00:00-04:00