Experts in the News

To request a media interview, please reach out to School of Physics experts using our faculty directory, or contact Jess Hunt-Ralston, College of Sciences communications director. A list of faculty experts and research areas across the College of Sciences at Georgia Tech is also available to journalists upon request.

Robotics engineers have worked for decades, using substantial funding, to create robots that can walk or run with the ease of animals. Despite these efforts, today’s robots still cannot match the natural abilities of many animals in terms of endurance, agility, and robustness. Seeking to understand and quantify this disparity, an interdisciplinary team of scientists and engineers from top research institutions, including Dunn Family Associate Professor at the School of Physics and the School of Biological Sciences Simon Sponberg, conducted a comprehensive study to compare various aspects of robotic systems designed for running with their biological counterparts. (This also appeared at The Jerusalem Post, TechXplore, and SciTechDaily.)

Earth.com 2024-04-26T00:00:00-04:00

In an opinion published in the May 2024 edition of APSNews, School of Physics Professor Andrew Zangwill reflects on the debate on the boundaries of physics and its impact on the discipline. Zangwill states “for more than a century, physicists have been drawing and redrawing the borders around the field, embracing and rejecting subfields along the way.”

American Physical Society News 2024-04-12T00:00:00-04:00

The stars aligned to give a Georgia Tech undergraduate student and an alum the moment of a lifetime during the recent solar eclipse. Corinne Hill is currently majoring in physics with a concentration in astrophysics. Nathaniel Greve graduated in 2023 with a degree in computer science. The couple met in 2021 when they both played alto saxes in the Georgia Tech marching band. After being unable to experience totality in 2017, Greve said the pair made plans to go to Wapakoneta, Ohio, for 2024′s eclipse. Hill’s friends in the Astronomy Club went to the Ozarks to experience the eclipse, but Hill agreed to go to Ohio instead.

Atlanta News First 2024-04-11T00:00:00-04:00

Crowds in Georgia and people across the U.S. are gearing up to watch the 2024 Great North American Eclipse. The eclipse’s path of totality stretches across 13 states in the U.S. Georgia is not included in the path of totality, but Atlanta is expected to experience the effects of a partial eclipse. Show host Rose Scott speaks with Georgia-based astronomy expert Jim Sowell, a principal academic professional with the School of Physics and an astronomy expert who serves as the director of the Georgia Tech Observatory.

WABE Closer Look with Rose Scott 2024-04-08T00:00:00-04:00

It’s been 10 years since the Air Force Research Laboratory, or AFRL, successfully launched the astronomy outreach program called Aloha Explorations at the Air Force Maui Optical and Supercomputing site, or AMOS, in Maui, Hawaii. This STEM outreach project uses an 11-inch Celestron telescope, also known as the Aloha Telescope, to provide students in grades K-12 the ability to view live images from their classrooms and remotely control the telescope via an internet connection. The idea for this project originated from Dr. James Sowell, an astronomer and observatory director at the School of Physics. (This story also appeared at Los Alamos Daily Post and Defense Visual Information Distribution Service.)

Air Force Research Laboratory 2024-04-04T00:00:00-04:00

Georgia Tech students associated with the Astronomy Club are traveling to Missouri in order to be in the path of totality for the April 8 solar eclipse. The path of totality is the prime spot for viewing the moon travel between the Earth and the Sun. For the eclipse viewing trip, the Club plans to bring along astrophotography gear, an 8-inch Celestron telescope with a solar filter, and other equipment for members to use. (The Atlanta Journal-Constitution also covered this story.)

11 Alive 2024-04-01T00:00:00-04:00

Odd things can happen when a wave meets a boundary. In the ocean, tsunami waves that are hardly noticeable in deep water can become quite large at the continental shelf and shore, as the waves slow and their mass moves upward. In a recent study led by School of Physics Dunn Family Professor Daniel Goldman and published in the journal Physical Review Letters, scientists have shown that a floating, symmetric oscillating robot will experience forces when it comes close to a boundary. These forces can be used for self-propulsion without the need for more typical mechanisms such as a propeller.

Tech Xplore 2024-03-09T00:00:00-05:00

The way muscles work changes when a person goes from slow, even movements to rapid, unsteady movements. Anyone who’s pulled a muscle after a sudden motion knows that. What we don’t know is exactly how muscle function changes when dynamic movement is introduced. A new NSF-funded project co-led by Simon Sponberg, Dunn Family Associate Professor in the School of Physics and School of Biological Sciences, will examine dynamic muscle function of humans and animals with the goal of creating improved physical therapy and rehabilitation programs and mobility assistance devices. That translates to more humans who can move with less pain. 

Northern Arizona University 2024-03-04T00:00:00-05:00

Are our bodies solid or liquid? This question begins the exploration of a study led by Zeb Rocklin, an assistant professor in the School of Physics at Georgia Tech, that blurs the lines between solid and liquid states by examining materials that exhibit properties of both. The study, titled 'Rigidity percolation in a random tensegrity via analytic graph theory,' published in the Proceedings of the National Academy of Sciences (PNAS), introduces a novel approach to understanding the behavior of deformable solids through the incorporation of cable-like elements, offering insights with significant implications for biology, engineering, and nanotechnology.

BNN 2024-02-29T00:00:00-05:00

Researchers at the Georgia Institute of Technology, working with a team from China’s Tianjin University, claim to have developed the first functional semiconductor from graphene, a single-layer carbon structure renowned for its robust bonds. Led by Walter De Heer, Regents' Professor in the School of Physics, the study published in Nature details a graphene semiconductor compatible with standard microelectronic processing methods, a fundamental requirement for any viable alternative to silicon.

Electronic Engineer Times Europe 2024-02-28T00:00:00-05:00

When Intel co-founder Gordon Moore made the observation that came to be known as Moore's Law, he projected that transistor density would continue doubling in density every two years... for another ten years. Working with Tianjin University in China, though, researchers at Georgia Tech have made a breakthrough in this department by growing graphene on doped silicon carbide wafers, introducing impurities into the graphene that give it a usable band gap, enabling the researchers to create graphene transistors the size of a carbon atom. In research led by School of Physics Regents' Professor Walter De Heer, these switches can reach into the teraHertz range and run cooler than silicon transistors, potentially breathing new life into the aging Moore's Law.

RedShark News 2024-02-27T00:00:00-05:00

A recent publication from the group of Prof. Dan Goldman made it to the Cover of Physical Review Letters vol. 132, issue 8 (https://journals.aps.org/prl/covers/132/8). The research article “Probing Hydrodynamic Fluctuation-Induced Forces with an Oscillating Robot”, by Steven W. Tarr, Joseph S. Brunner, Daniel Soto, and Daniel I. Goldman, Phys. Rev. Lett. 132, 084001 was published on 20 February 2024, and was also selected as an Editor’s Suggestion (https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.084001).

Physical Review Letters 2024-02-23T00:00:00-05:00

Events

Apr 17

School of Physics CRA Seminar - Dr. Caitlin Rose

CRA Seminar | Dr. Caitlin Rose |Georgia Tech| Host: Dr. Surabhi Sachdev

Apr 18

Fossil Friday

Come join the Spatial Ecology and Paleontology Lab for Fossil Fridays! Become a fossil hunter and help discover how vertebrate communities have changed through time.

Apr 21

School of Physics Spring Colloquium Series-Dr. Lia Medeiros

Lia Medeiros(Univ. of Wisconsin Milwaukee) EHT images of black holes: what we've learned from them and how we can improve them

Apr 22

Systems Matter Seminar | Materials-Driven Strategies for Translational Bioelectrical Interfaces

Featuring Bozhi Tian, professor at the University of Chicago department of Chemistry

Apr 23

Entanglement in Tensor Networks- Dr. Andrej Gendiar, School of Physics CM/AMO/Quantum Seminar

Tensor Networks are special classes of variational quantum states typically applied to study strongly correlated many-body systems.

Apr 25

Fossil Friday

Come join the Spatial Ecology and Paleontology Lab for Fossil Fridays! Become a fossil hunter and help discover how vertebrate communities have changed through time.

May 01

Observatory Public Night

On the grounds between the Howey and Mason Buildings, several telescopes are typically set up for viewing, and visitors are invited to bring their own telescope, as well.

Experts in the News

Peter Yunker, associate professor in the School of Physics, reflects on the results of new experiments which show that cells pack in increasingly well-ordered patterns as the relative sizes of their nuclei grow.

“This research is a beautiful example of how the physics of packing is so important in biological systems,” states Yunker. He says the researchers introduce the idea that cell packing can be controlled by the relative size of the nucleus, which “is an accessible control parameter that may play important roles during development and could be used in bioengineering.”

Physics Magazine 2025-03-21T00:00:00-04:00

School of Physics Professor Ignacio Taboada provided brief commentary on KM3NeT, a new underwater neutrino experiment that has detected what appears to be the highest-energy cosmic neutrino observed to date.

“This is clearly an interesting event. It is also very unusual,” said Taboada, spokesperson for the IceCube experiment in Antarctica. IceCube, which has a similar detector-array design as KM3NeT but is encased in ice rather than water, has detected neutrinos with energies as high as 10 PeV, but nothing in 100 PeV range. “IceCube has worked for 14 years, so it’s weird that we don’t see the same thing,” Taboada said. Taboada is not involved in the KM3Net experiment. 

The KM3NeT team is aware of this weirdness. They compared the KM3-230213A event to upper limits on the neutrino flux given by IceCube and the Pierre Auger cosmic-ray experiment in Argentina. Taking those limits as given, they found that there was a 1% chance of detecting a 220-PeV neutrino during KM3NeT’s preliminary (287-day) measurement campaign. 

This also appeared in Scientific American and Smithsonian Magazine.

Physics Magazine 2025-02-12T00:00:00-05:00

Georgia Tech researchers from the School of Chemistry and Biochemistry, the School of Earth and Atmospheric Sciences, and the School of Physics including Regents' Professor Thomas Orlando, Assistant Professor Karl Lang, and post-doctoral researcher Micah Schaible are among the authors of a paper recently published in Scientific Reports.

Researchers from the University of Georgia and Georgia Tech demonstrated that space weathering alterations of the surface of lunar samples at the nanoscale may provide a mechanism to distinguish lunar samples of variable surface exposure age.

Nature Scientific Reports 2025-01-02T00:00:00-05:00

Despite the fact that Antarctica is extraordinarily difficult to get to, astronomers love it and have chosen it as the location for the IceCube Neutrino Observatory. What could possibly make such a remote location so desirable for space science that it’s worth all that trouble? 

In this article, scientists including Georgia Tech's Brandon Pries from the School of Physics explain why the South Pole is such a hotspot for astronomers. The answer? At the South Pole, you can best view neutrons and neutrinos in space. 

Pries compares the benefits of the South Pole to the North Pole. “The North Pole is more difficult because ice coverage there fluctuates,” explains Pries. “There is a foundation of bedrock underneath Antarctica that serves as a solid base for the IceCube instruments.” This bedrock is also why Antarctica is home to the South Pole Telescope, a radio observatory that helped take the first ever photo of a black hole.

Popular Science 2024-09-05T00:00:00-04:00

Georgia Tech researchers from the School of Physics including fifth-year PhD student Mengqi Huang and Assistant Professor Chunhui Rita Du are among the authors of a paper recently published in Nature Physics. Researchers from six universities and Oak Ridge National Laboratory showed that strong quantum fluctuations can stabilize an unconventional magnetic phase after destroying a more conventional one.

Nature Physics 2024-08-26T00:00:00-04:00

Scientists have produced an image of the Milky Way not based on electromagnetic radiation - light - but on ghostly subatomic particles called neutrinos. They detected high-energy neutrinos in pristine ice deep below Antarctica's surface, then traced their source back to locations in the Milky Way - the first time these particles have been observed arising from our galaxy.

The neutrinos were detected over a span of a decade at the IceCube Neutrino Observatory at a U.S. scientific research station at the South Pole, using more than 5,000 sensors covering an area the size of a small mountain.

School of Physics Professor Ignacio Taboada is the spokesperson for the IceCube Neutrino Observatory and provides a brief commentary on this new research:

"This observation is ground-breaking. It established the galaxy as a neutrino source. Every future work will refer to this observation," says Taboada.

Reuters 2024-07-29T00:00:00-04:00