The manipulation and detection of individual quantum excitations forms the basis of modern quantum optics experiments. However, most of these experiments have been restricted to systems composed of only a few particles.
In recent years, tremendous experimental progress has been made in probing strongly interacting many-body systems at the level of individual particles. This was achieved using single-site- and single-atom-resolved imaging and manipulation of quantum gases in optical lattices. With this technique, ‘snapshots’ of a fluctuating many-body system are obtained, where individual excitations are directly visible and, by shining light through the imaging system, are also directly addressable.
I will review these developments and present, in more detail, a few chosen experiments: The single-site-resolved detection of correlation functions [1], the observation of the quantum dynamics of a mobile spin impurity [2], and the detection of an amplitude ‘Higgs’ mode [3]. I will conclude with analyzing the current limitations and possible future developments, in particular, concerning the detection of entanglement in quantum many-body systems.
[1] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauss, C. Gross, L. Mazza, M. C. Banuls, L. Pollet, I. Bloch and S. Kuhr, Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators, Science 334, 200 (2011)
[2] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauss, S. Hild, D. Bellem, U. Schollwock, T. Giamarchi, C. Gross, I. Bloch and S. Kuhr, Quantum dynamics of a mobile spin impurity, Nature Phys. 9, 235 (2013)
[3] M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauss, C. Gross, E. Demler, S. Kuhr, I. Bloch, The `Higgs' amplitude mode at the two-dimensional superfluid/Mott insulator transition, Nature 487, 454-458 (2012)
Event Details
Date/Time:
-
Date:Thursday, February 27, 2014 - 10:00am
Location:
College of Computing, CoC017