The unification of the four fundamental forces remains one of the most important issues in theoretical particle physics. In this talk, I will first give a short introduction to Non-Commutative Spectral Geometry, a bottom-up approach that unifies the (successful) Standard Model of high energy physics with Einstein's General theory of Relativity. The model is built upon almost-commutative spaces and I will discuss the physical implications of the choice of such manifolds. I will show that even though the unification has been obtained only at the classical level, the doubling of the algebra may incorporate the seeds of quantization. I will then briefly review the particle physics phenomenology and highlight open issues and current proposals. In the last part of my talk, I will explore consequences of the Gravitational-Higgs part of the spectral action formulated within such almost-commutative manifolds. In particular, I will study modifications of the Friedmann equation, propagation of gravitational waves and the onset of inflation. I will show how current measurements (Gravity Probe, pulsars, and torsion balance) can constrain free parameters of the model. I will conclude with a short discussion on open questions.
Event Details
Date/Time:
-
Date:Friday, January 31, 2014 - 11:00am
Location:
Math Building - Skiles Rm. G 006