Got symmetry? Here is how you slice it

With recent advances in experimental imaging, computational methods, and dynamics insights it is now possible to start charting out the terra incognita explored by turbulence in strongly nonlinear classical field theories, such as fluid flows. In presence of continuous symmetries these solutions sweep out 2- and higher-dimensional manifolds (group orbits) of physically equivalent states, interconnected by a web of still higher-dimensional stable/unstable manifolds, all embedded in the PDE infinite-dimensional state spaces. In order to chart such invariant manifolds, one must first quotient the symmetries, i.e. replace the dynamics on M by an equivalent, symmetry reduced flow on M/G, in...

With recent advances in experimental imaging, computational methods, and dynamics insights it is now possible to start charting out the terra incognita explored by turbulence in strongly nonlinear classical field theories, such as fluid flows. In presence of continuous symmetries these solutions sweep out 2- and higher-dimensional manifolds (group orbits) of physically equivalent states, interconnected by a web of still higher-dimensional stable/unstable manifolds, all embedded in the PDE infinite-dimensional state spaces. In order to chart such invariant manifolds, one must first quotient the symmetries, i.e. replace the dynamics on M by an equivalent, symmetry reduced flow on M/G, in which each group orbit of symmetry-related states is replaced by a single representative.

Happy news: The problem has been solved often, first by Jacobi (1846), then by Hilbert and Weyl (1921), then by Cartan (1924), then by [...], then in this week's arXiv [...]. Turns out, it's not as easy as it looks.

Still, every unhappy family is unhappy in its own way: The Hilbert's solution (invariant polynomial bases) is useless. The way we do this in quantum field theory (gauge fixing) is not right either. Currently only the "method of slices" does the job: it slices the state space by a set of hyperplanes in such a way that each group orbit manifold of symmetry-equivalent points is represented by a single point, but as slices are only local, tangent charts, an atlas comprised from a set of charts is needed to capture the flow globally. Lots of work and not a pretty sight (Nature does not like symmetries), but one is rewarded by much deeper insights into turbulent dynamics; without this atlas you will not get anywhere.

This is not a fluid dynamics talk. If you care about atomic, nuclear or celestial physics, general relativity or quantum field theory you might be interested and perhaps help us do this better.

You can take part in this seminar from wherever you are by clicking on
evo.caltech.edu/evoNext/koala.jnlp?meeting=M2MvMB2M2IDsDs9I9lDM92

Event Details

Date/Time:

  • Date: 
    Monday, March 26, 2012 - 7:00am

Location:
Skiles 006