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We present a variational many-body wave function for repelling bosons in rotating traps, focusing on
rotational frequencies that do not lead to restriction to the lowest Landau level. This wave function
incorporates correlations beyond the Gross-Pitaevskii (GP) mean-field approximation, and it describes
rotating boson molecules (RBMs) made of localized bosons that form polygonal-ring-like crystalline
patterns in their intrinsic frame of reference. The RBMs exhibit characteristic periodic dependencies of
the ground-state angular momenta on the number of bosons in the polygonal rings. For small numbers of
neutral bosons, the RBM ground-state energies are found to be always lower than those of the
corresponding GP solutions, in particular, in the regime of GP vortex formation.
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Recent experimental advances in the field of trapped
ultracold neutral bosonic gases have enabled control of
the strength of interatomic interactions over wide ranges
[1–4], from the very weak to the very strong. This control
is essential for experimental realizations of novel states of
matter beyond the well-known Bose-Einstein condensate
[2–4]. In this context, the linear 1D Tonks-Girardeau
regime of impenetrable trapped bosons has generated in-
tensive theoretical activity [5,6] and several experimental
realizations of it have been reported most recently [3,4].

Here we address the properties of strongly repelling
impenetrable bosons in rotating ring-shaped or 2D har-
monic traps. To this end, we recall that impenetrable
bosons are ‘‘localized’’ relative to each other [4,7] and
exhibit nontrivial intrinsic crystalline correlations [7]. For
a small number of bosons, N, these crystalline arrange-
ments are reminiscent of the structures exibited by the
well-studied rotating electron molecules (REMs) in quan-
tum dots under high-magnetic fields [8,9]. Consequently,
we use in the following the term rotating boson molecules
(RBMs). A central result of our study is that the point-
group symmetries of the intrinsic crystalline structures
give rise to characteristic regular patterns (see below) in
the ground-state spectra and associated angular momenta
of the RBMs as a function of the rotational frequency
for neutral bosons (or the magnetic field for charged
bosons).

An unexpected result of our studies is that the rotation of
repelling bosons (even those interacting weakly) does not
necessarily lead to formation of vortices, as is familiar
from the case of rotating Bose-Einstein condenstates
(BECs). In particular, for small N, we will show that the
Gross-Pitaevskii (GP) energies (including those corre-
sponding to formation of vortices) remain always higher
compared to the ground-state energies of the RBMs. Of
course, we expect that the rotating BEC will become the
preferred ground state for sufficiently largeN in the case of
weakly repelling neutral bosons. We anticipate, however,
that it will be feasible to test our unexpected results for
small N by using rotating optical lattices, where it is

established that a small finite number of atoms can be
trapped per given site [2].

In a nonrotating trap, it is natural to describe a localized
boson (at a position Rj) by a simple displaced Gaussian
[7]. For a rotating trap, the Gaussian is modified by a phase
factor, determined through the analogy between the one-
boson Hamiltonian in the rotating frame of reference and
the planar motion of a charged particle under the influence
of a perpendicular magnetic field B (in the symmetric
gauge). The single-particle wave function of a localized
boson is

 ’j�r� � ’�r;Rj�
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with Q � ẑ=�2�2� and the width of the Gaussian � is a
variational parameter; � � lB �
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for the case of

a perpendicular magnetic field B, and � � l� ���������������������
@=�2m��

p
in the case of a rotating trap with rotational

frequency �. Note that we consider a 2D trap, so that r �
�x; y� and R � �X; Y�. The Hamiltonian corresponding to
the single-particle kinetic energy is given by HK�r� �
�p� @Q� r�2=�2m�, for the case of a magnetic field,
and by HK�r� � �p� @Q� r�2=�2m� �m�2r2=2, for
the case of a rotating frame of reference [10].

A toroidal trap with radius r0 and a trap frequency !0

can be specified by the confining potential

 V�r� �
@!0

2
�r� r0�

n=ln0 ; (2)

with l0 �
�������������������
@=�m!0�

p
being the characteristic length of the

2D trap. For n� 2 and l0=r0 ! 0 this potential ap-
proaches the limit of a toroidal trap with zero width,
considered often in previous theoretical studies (see, e.g.,
Ref. [11]). In the following, we consider the case with n �
2, which is experimentally more realistic. In the limit r0 �
0, one recovers a harmonic trapping potential.

To construct an RBM variational many-body wave func-
tion describing N impenetrable bosons in the toroidal trap,
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we use N displaced orbitals ’�r;Ri�, i � 1; 2; . . . ; N [see
Eq. (1)] centered at the vertices of a regular polygon. Then,
we first construct an unrestricted Bose Hartree-Fock
(UBHF) permanent [7] j�UBHF

N i /
P
P�im�’1�ri1� �

’2�ri2� . . .’N�riN �. The UBHF permanent breaks the cir-
cular symmetry of the many-body Hamiltonian. The ‘‘sym-
metry dilemma’’ is resolved through a subsequent
‘‘symmetry-restoration’’ step accomplished via projection
techniques [9,12,13]; i.e., we construct a many-body wave
function with good total angular momentum by applying
the projection operator P̂ L � �1=2��

R
2�
0 d� exp	i��L�

L̂�
, so that the final RBM wave function is given by

 j�PRJ
N;Li �

1

2�

Z 2�

0
d�j�UBHF

N ���iei�L: (3)

j�UBHF
N ���i is the original UBHF permanent rotated by an

azimuthal angle �. We note that, in addition to having good
angular momenta, the projected (PRJ) wave function
j�PRJ

N;Li has also a lower energy than that of j�UBHF
N i [see,

e.g. EPRJ
L � EUBHF in Fig. 1(b)]. The projected ground-state

energy is given by

 EPRJ
L �

Z 2�

0
h���ei�Ld�

�Z 2�

0
n���ei�Ld�; (4)

where h��� � h�UBHF
N �� � 0�jHj�UBHF

N ���i and n��� �

h�UBHF
N �� � 0�j�UBHF

N ���i; the latter term ensures proper
normalization.

The many-body Hamiltonian is given by H �PN
i�1	HK�ri� � V�ri�
 �

PN
i<j V�ri; rj�, with the interpar-

ticle interaction being given by a contact potential V� �
g��ri � rj� for neutral bosons and a Coulomb potential
VC � Z2e2=jri � rjj for charged bosons. The parameter
that controls the strength of the interparticle repulsion
relative to the zero-point kinetic energy is given by R� �
gm=�2�@2� [7] for a contact potential and RW �
Z2e2=�@!0l0� [7,14] for a Coulomb repulsion.

For a given value of the dimensionless rotational fre-
quency, �=!0, the projection yields wave functions and
energies for a whole rotational band comprising many
angular momenta. In the following, we focus on the
ground-state wave function (and corresponding angular
momentum and energy) associated with the lowest energy
in the band.

Figure 1(a) displays the ground-state energy EPRJ of
N � 8 bosons in a toroidal trap as a function of �=!0.
The prominent features in Fig. 1(a) are: (i) the energy
diminishes as �=!0 increases; this is an effect of the
centrifugal force, and (ii) the EPRJ curve consists of linear
segments, each one associated with a given angular mo-
mentum L. Most remarkable is the regular variation of the
values of L with a constant step of N units (here N � 8)
[see inset in Figs. 1(a) and 1(c)]. These preferred angular
momenta L � kN with integer k, are reminiscent of the so
called ‘‘magic angular momenta’’ familiar from studies of
electrons under high-magnetic fields in 2D semiconductor
quantum dots [8,9]. The preferred angular momenta reflect
the intrinsic molecular structure of the localized impene-
trable bosons. We note, that the (0,8) polygonal-ring ar-
rangement is obvious in the single-particle density
associated with the UBHF permanent [see Fig. 2(b)];
(0,8) denotes no particles in the inner ring and 8 particles
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FIG. 1 (color online). Properties of N � 8 neutral repelling
bosons in a rotating toroidal trap as a function of the reduced
rotational frequency �=!0. The confining potential is given by
Eq. (2) with n � 2 and radius r0 � 3l0, and the interaction-
strength parameter was chosen as R� � 50. (a) RBM ground-
state energies, EPRJ. The inset shows the range 0 � �=!0 �
0:3. The numbers denote ground-state magic angular momenta.
(b) Energy difference EPRJ � EUBHF. (c) Total angular momenta
associated with (i) the RBM ground states [black, thick solid line
(showing steps and marked as PRJ)] and (ii) the UBHF solutions
(red, thin solid line). Lz in the figures and in the text has the same
meaning as the symbol L (without a subscript).

FIG. 2 (color online). SP densities and CPDs for N � 8 bosons
in a rotating toroidal trap with �=!0 � 0:2 and R� � 50. The
remaining trap parameters are as in Fig. 1. (a) GP SP density.
(b) UBHF SP density exhibiting breaking of the circular sym-
metry. (c) RBM SP density exhibiting circular symmetry.
(d) CPD for the RBM wave function [PRJ wave function, see
Eq. (3)] revealing the hidden point-group symmetry in the
intrinsic frame of reference. The observation point is denoted
by a white dot. The RBM ground-state angular momentum is
Lz � 16. Lengths in units of l0. The vertical scale is the same for
(b),(c), and (d), but different for (a).
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in the outer one. After restoration of symmetry, however,
the single-particle (SP) density is circularly symmetric [see
the PRJ SP-density in Fig. 2(c)] and the intrinsic crystal-
linity becomes ‘‘hidden’’; it can, however, be revealed via
the conditional probability distribution (CPD) [7,9] [see
Fig. 2(d)]. We note the Gross-Pitaevskii SP density in
Fig. 2(a), which is clearly different from the PRJ density
in Fig. 2(c).

The internal structure for charged bosons in a toroidal
trap (not shown) is similar to that of neutral bosons (Fig. 2),
i.e., a (0,8) ring arrangement, portrayed also in the stepwise
variation (in steps of 8 units) of the total angular momenta.
The internal structure is also reflected in the variation of the
ground-state total energy as a function of the magnetic
field. In contrast to the case of neutral bosons, however,
the ground-state energy curve for charged bosons is not
composed of linear segments, but of intersecting inverted-
parabola-type pieces.

For RBMs in rotating harmonic traps, the polygonal-
ring pattern of localized bosons becomes more complex
than the simple (0, N) arrangement in a toroidal trap.
Indeed, in harmonic traps, one anticipates the emergence
of concentric ring structures. ForN � 6 neutral bosons in a
harmonic trap, we observe that, as in the case of a toroidal
trap, the ground-state energy as a function of
�=!0[Fig. 3(a)] is composed of linear segments, but
now the corresponding magic angular momenta
[Fig. 3(b)] vary in steps of N � 1 � 5 units. This indicates
an RBM consisting of two polygonal rings; denoted as a
(1,5) structure, with the inner ring having a single boson
and the outer ring five.

In Fig. 4(a), we display the RBM and mean-field GP
ground-state energies of N � 6 strongly repelling (i.e.,
R� � 50) neutral bosons in a harmonic trap as a function
of the reduced angular frequency of the trap. The GP curve
(red, thin solid line) remains well above the RBM curve
(green, thick solid line) in the whole range 0 � �=!0 � 1.
The RBM ground-state angular momenta exhibit again the
periodicity in steps of five units [Fig. 4(b)]. As expected,
the GP total angular momenta are quantized [Lz � 0 (no
vortex) or Lz � 6 (one central vortex)] only for an initial
range 0 � �=!0 � 0:42. For �=!0 
 0:42, the GP total
angular momentum takes noninteger values and ceases to
be a good quantum number, reflecting the broken-
symmetry character of the associated mean field, with
each kink signaling the appearance of a different vortex
pattern of p-fold symmetry (p � 1; 2; 3; 4; :::) [15]; see an
example in Fig. 4(c).

The energetic superiority of the RBM wave function
over the GP solution demonstrated in Fig. 4(a) was to be
expected, since we considered the case of strongly repel-
ling bosons. Unexpectedly, however, for a small number of
neutral bosons the energetic advantage of the RBM persists
even for weakly repelling bosons, as illustrated in Fig. 5(a).
Indeed, Fig. 5(a) displays the RBM (green, thick solid line)
and GP (red, thin solid line) ground-state energies for N �
6 neutral bosons in a trap rotating with �=!0 � 0:85 as a
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FIG. 3 (color online). Properties of N � 6 neutral bosons in a
rotating harmonic trap as a function of the reduced rotational
frequency �=!0. The confining potential is given by Eq. (2)
with n � 2 and r0 � 0, and the interaction-strength parameter
was chosen as R� � 50. The intrinsic molecular structure is
(1,5). (a) RBM ground-state energies, EPRJ. The inset shows a
smaller range. The numbers denote ground-state angular mo-
menta. (b) Total angular momenta associated with (i) the RBM
ground states (black, thick solid line showing steps) and (ii) the
UBHF solutions (red, thin solid line).
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FIG. 4 (color online). Properties of GP solutions (red, thin
solid line) versus those of RBM wave functions (green, thick
solid line) for N � 6 neutral bosons as a function of the reduced
rotational frequency �=!0. A harmonic trap is considered, and
the interaction strength equals R� � 50. (a) Ground-state ener-
gies. (b) Associated ground-state angular momenta. (c) GP
(BEC) SP density at �=!0 � 0:65 having 7 vortices with a
sixfold symmetry (thus exhibiting breaking of the circular sym-
metry). (d) RBM SP density at �=!0 � 0:65 which does not
break the circular symmetry. (e) CPD of the RBM at �=!0 �
0:65 revealing the intrinsic (1,5) crystalline pattern. The white
dot denotes the observation point r0. Note the dramatic differ-
ence in spatial extent between the GP and RBM wave functions
[compare (c) with (d) and (e)]. Lengths in units of l0. The
vertical scale is the same for (d) and (e), but different for (c).
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function of the interaction parameter R�. The surprising
result in Fig. 5(a) is that the GP energy remains above the
RBM curve even for R� ! 0. Of course the RBM wave
function is very close to that of a BEC without vortices
when R� ! 0 (BECs without vortices are approximately
feasible for small N). However, for small N, our results
show that BECs with vortices (i.e., for Lz 
 N) are not the
preferred many-body ground states; instead, formation of
RBMs is favored. Note that the energy difference EGP �
EPRJ increases rapidly with increasing R�, reflecting the
fact that the RBM energies saturate (as is to be expected
from general arguments), while the GP energies (even
with vortices fully accounted for) exhibit an unphysical
divergence as R� ! 1 [Fig. 5(a)]; we have checked this
trend up to values of R� � 100 (not shown). Of interest
again is the different behavior of the RBM and GP ground-
state angular momenta [Fig. 5(b)] [see also discussion of
Fig. 4(b)].

In conclusion, we have introduced (and studied the
ground-state properties of) a variational many-body wave
function for repelling bosons in rotating traps that incor-
porates correlations beyond the Gross-Pitaevskii mean-
field approximations. This variational wave function de-
scribes rotating boson molecules, i.e., localized bosons
arranged in polygonal-ring-type patterns in their intrinsic
frame of reference. For small numbers of neutral bosons,
and, in particular, in the case of GP vortex formation, the
RBM ground-state energies are lower than those associated
with the corresponding Gross-Pitaevskii BEC solutions.
Given the large differences between the properties of the
RBM and BEC wave functions (which become more pro-
nounced for larger interaction parameter R�), and the

recently demonstrated ability to experimentally control
R� [1–4], we anticipate that our results could be tested in
experiments involving rotating optical lattices. Detection
of RBMs could be based on a variety of approaches [16],
such as the measurement of the spatial extent [contrast the
RBM and BEC spatial extents in Figs. 4(c)–4(e)], or the
use of Hanbury Brown–Twiss-type experiments [17] to di-
rectly detect the intrinsic crystalline structure of the RBM.

This work is supported by the U. S. D. O. E. (Grant
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FIG. 5 (color online). Properties of GP solutions (red, thin
solid line) versus those of RBM wave functions (green, thick
solid line) for N � 6 bosons as a function of the interaction
strength R�. A harmonic trap is considered, and the reduced
rotational frequency equals �=!0 � 0:85. (a) Ground-state en-
ergies (b) Associated ground-state angular momenta.
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