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The thermopower of a Luttinger liquid.L ), originating from the energy dispersion of electrons at the Fermi
level and/or from the backscattering of electrons by impurities, is analytically evaluated. It is shown that in
both cases the thermopower is described by a corresponding Fermi-liquid formula renormalized by an
interaction-dependent factor. For an infinite LL the renormalization coefficients decrease with an increase of
the electron-electron interaction. In a realistic situation, when a LL wire is connected to leads of noninteracting
electrons, the dispersion-induced thermopower in the limit of strong repulsive interaction is strongly sup-
pressed S{P ~ g?Si? <@ (here S is the corresponding Fermi-liquid value for the thermopower gnd
<1 is the LL correlation parametemwhile the impurity-induced thermopow&f)) ~ S{’/g is enhanced by the
interelectron interaction.

DOI: 10.1103/PhysRevB.65.075115 PACS nuni®er72.15.Jf, 71.27a
[. INTRODUCTION Ref. 7 for a calculation of the thermopower using the Hub-
bard model.
The transport properties of a Luttinger liquidL) differ For noninteracting particles the thermopower coefficient

strongly from those known for the Fermi liqutd,with one ~ So(T) is conventionally described, in the linear regime, by
of the most interesting examples pertaining to charge trandvott's formula as a logarithmic derivative of the conduc-
port through an impurity. In a Fermi liqui¢FL) the trans-  tanceGy evaluated at the Fermi energsee, e.g., Ref.)8
mission amplitude of an electron through a local defeot

purity) is fully determined by the shape of the impurity 2 kéT 91N Gy(e)

potential and it is a common assumption for metals that this So(T)=—— —(— (N]
. . . 3 e de _

amplitude is a smooth function of the electron energy near s=sp

the Fermi energyKg), i.e.,e~Eg. In contrast, the tunnel- _ § ) i
ing of electrons in a LL depends primarily on the properties!n & Prévious papewe have shown via a phenomenological
model that for a LL connected to leads of noninteracting

of the LL wire and it is strongly suppressed by the repulsive lect the th b ted by a Mott-lik
electron-electron interactiohA simple physical explanation electrons the thermopower can be represented by a Viott-iike
of this effect can be obtained, for instance, in the limit Offormula with an additional mteractpn-dependent renormal-
weak interaction. It was showhat for a weakly interacting ization factor. Although the assumptions made in Ref. 6 are

di ional(1D) elect ¢ the b lect reasonable and the model gives a simple and qualitatively
one-dimensiona electron system the baré €lection ., q . description of charge transport in LL wires, there is

transmission amplitude is renormalized by the interelectrony g consistent quantitative theory of thermoelectric ef-
mteracnqn and that it vanishes in the vicinity of the Fermitocts in Lis. In this paper we consider anfinite LL and
energy, i.e.tr(e—Eg)—0. Consequently, the temperature gyjuate analytically the thermopower inducédl by the
strongly affects the tunneling of a charge in a LL. As a resultngnlinearities in the electron spectrum afit) by back-
the conductance of a LL wire scales with the temperature ascattering of the electrons from a single impurity.
a power-law function[for instance, for spinless electrons It is physically evident that for an ideémpurity-free LL
G(T)=T2@ =1, whereg is the correlation parameter of the the thermopower coefficient is ze¥dhhis is a direct conse-
LL ], whereas for a wire of noninteracting electrons the con-quence of thdinear spectrum of electrons in the Tomonaga-
ductance does not depend on temperature at low temperhuttinger model. Nonlinear corrections to the electron spec-
tures. trum in the energy regione~Eg will induce a finite

If the temperatures of the leads attached to a wire aréhermopower coefficiert. The corrections are small, and
different, an electric current is induced by the voltage dropthey can be treated by perturbation theory. Thus one can
and by the temperature gradient across the system. In a Lleadily estimate in this case the dependence of the ther-
wire both contributions to the current are power-law func-mopower on the interaction strength by using simple dimen-
tions of the temperature with interaction-dependent exposional analysis, as shown below.
nents. However, the ratio of the corresponding kinetic coef- Let us consider first the limit of strong repulsive interac-
ficients, i.e., the thermopower, is affected less by thdion, g=vg/s<1, wheresis the velocity of the plasmons in
interaction; that is, it remains a linear function of the tem-a LL. In the conventional definition of the thermopower co-
perature as in the case of noninteracting elecitbtsee also efficient it is expressed as the ratio of two kinetic coeffi-
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cients, i.e.S= —G,1/Gy, that express the electric conduc- calculation of the thermopower coefficient in a LL. In Sec.
tance due to the voltage drop’) and due to the temperature |V we summarize the main results of the paper and reformu-
difference (AT) across the system; that is, the electric cur-late them for the case of a finite LL wire connected to leads
rent through the system is given By=G,V+G,tAT. For  of noninteracting electrons. Technical details of the calcula-
an ideal infinite LL the conductance By=(e%h)g (see tions are given in the appendixes.

Refs. 9 and B The cross coefficiertthermoelectric conduc-

tance G, is fully determined by the nonlinearities in the Il. DISPERSION-INDUCED THERMOPOWER

electron spectrum. The fir§guadratig correction to the lin-

ear electron spectrum at-Eg. is proportlonal _tO&v'Z:/‘;EF' trons. We will take into account the nonlineaquadrati¢
Therzefore, to the lowest order in perturbation the@yr  cqrrection to the linearized electron spectrumeatEe (in
«dvglJEg, and in order to restore the correct dimension ofiphe following we puthi=kg=1):
G, (it is dimensionless in the unies=#A=kg=1) we have
to compensate the dimension of the coefficient of the spectral E (K)=ver(k—kg) +A(k—kg)?, 2)
nonlinearity by the factoff/s? (T is the average tempera-
ture). This yields the following estimate for the dispersion- Where the index = =1 denotes the rightR: r=+1) and
induced thermopower of a LL in the limit of strong interac- the left (L: r=—1) branches of the 1D electron spectrum,
tion, SV(T,g) = (ks /€) (gks T/vE) (dve /JEE). In Sec. Il we and A=(vg/2)(dve/dEg) is the nonlinearity parameter
prove the validity of these simple consideratigiisoy mak- ~ Which is assumed to be smah<ve/pe.
ing use of scaling arguments afig) by explicit calculations ~ The Hamiltonian of the system takes the form
of S(T,g) through perturbation theory.

The thermopower of a LL can be induced also by the — H—p  +H, => f dx W (x) e (V) W, (x)
backscattering of the electrons by impurities in the wire. For T
repulsive interaction the potential that causes the backscatter- 1
ing of chargeq excitations is a relevant perturbatiora LL. + _E J' dxf dX'Uy 1 (X=X pr(X)prr(X'). (3)
Under such circumstances and at low temperatures, one can 27
replace the impurity potential by a weak lifjunction be- . )
tween two semi-infinite segments of a LL wire, and theHere fr(Vx):_'TUFer_A(.Vx) is the electron energy op-
charge transport through the junction can be evaluated pefrator,p (x) =¥ (x)¥(x) is the electron density operator,
turbatively by making use of the tunneling Hamiltonian andU; ;/(x—x") is the interaction potential, which we as-
method. To calculate the thermopower of a LL with an im-sume in the following to be short ranged, i.dJ(x)
purity, we begin with the general formula for the tunnel cur- = Ugd(X).
rent in an interacting electron systefsee, e.g., Ref. 10 The Hamiltonian given in Eq(3) with A=0 in the
First, we derive analytical expressions for the finite-bosonic representation is the standard Hamiltonian of a spin-
temperature spectral densities in a LL with free boundariedess LL (see, e.g., Ref.)2
in the literature, thespectral density functiorof a LL is
known only in the zero-temperature linti;*® although oo TS J°° q
finite-temperature expressions for the density of states have o2 ). X
been known and were used in a number of papers for the
evaluation of the -V characteristics of a Ll(see, e.g., Ref. Here s=vg/g is the velocity of plasmons andy !
14). With the help of these formulas we evaluate the kinetic= \1+ug/mve is the correlation parameter for spinless
coefficientsGy and G, and show that electron-electron in- electrons. The density operatogsy)(X) = pr(X) = p(X)
teractions renormalize the thermopower coefficient multipli-obey the anomalous commutation relatipmy(x),p;(X") ]
catively. The renormalization factor for anfinite LL de-  =—(i/27)d,8(x—x").
creases with an increase of the interaction strength. At first The dispersion of the electron spectrum results in unhar-
glance this statement seems to contradict our previous resuttonic bosonic terris that describe the interaction of plas-
(see Ref. § where an enhancement of the thermopower wasnons in the LL:
predicted for a LL wire connected to leads of noninteracting
electrons. However, the two problems under study are not [ 3 )
identical. In the case of a strong impurity one has to take into HA:AEJ dX[pn(X)+3pn(X)p3(X)]+H.c.  (5)
account the “Coulomb blockade” effect in the wire to relate -
the thermopower coefficierﬁ(L'), calculated for an infinite |t is useful to reexpress the Hamiltonians in EG8.and (5)
LL, to the one,S{), for a wire connected to leads of nonin- in terms of bosonic field$(x) andI1(x), obeying the ca-
teracting electrons. We show that for the last case the theronical commutation relations
mopower coefficient is enhanced by the interaction.

Let us consider an infinite 1D system of interacting elec-

1
ng(X)pJ(X)+§pN(X)pN(X) .4

The paper is organized as follows. In Sec. Il the
dispersion-induced thermopower is evaluated analytically by PNZEF%@, py=—2I1=~— m&@,
(i) simple scaling arguments ariil) by perturbation theory.
In Sec. Il the tunnel Hamiltonian method is applied to the [TI(X),P(x")]=—i6(x—x"). (6)
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Then the Hamiltonian of our model takes the fofsee also
Ref. 15 S

1 A 2 2 2
H= SWng dX[ (D)2 + X0, D)?]

— oo

+o0 3
i 3,2 2
+ %67 | . dx (0,P)°+ (Sg)z(axqb)(atdb) +H.c.|.
to ,
7  e— Rr
(7) —
In the linear response approximation the average dc cur "
rent -
_ilg

J(x)zf dx’a(l)(x,x’)E(x’)+$f dx’ c@(x,x")VT(x")
(8

is determined by two kinetic coefficients)(?), which, ac-
cording to the Kubo formalisti (see also Ref. 17 can be
expressed through the current-current and energy-current
correlation functions

FIG. 1. The integration contoue in the complex time plane.

a<1>(x,x'):fwdtjde(?cj(—ix,x)j(t,x'»o, (12)
o B 0 0
o D(x,x")= fo dtfo AN (=N X)(E,X7)),

0(2)(x,x’):wesggfxdtfﬁd)\(:rcq(—i)\,x)j(t,x')
0 0

* B
(2) " — i H ’
o 9(x,x") fo dtf0 dA(q(—iN,X)j(t,x")), 9 XSy~ 1.0, 13
whereB=1/T is the inverse temperaturgs — (e/27) 3, P is R .
the charge current operator, ag¢x) is the energy current WhereS;(—iB,0)=—fcHa(7")d7" andHa(7’) is the non-
operator defined by the continuity equatigin(x) + 9,q(x) harmonic part of the Hamiltonian, E¢7), in the interaction
=0 with the Hamiltonian densityh(x) given as H, representation. The thermal a\_/era(_ge)o is taken with re-
=[dx h(x). It is easy to find that in terms of the density SPect to the unperturbed Hamiltonian, £4), and the sym-
operators the energy current takes the form bol T, denotes the ordering of operators along the con®ur
in the complex time plang¢see Fig. 1 The correlators in
s s Egs.(12) and (13) can be rewritten in terms of the density
g(x)= —pi3(X)pn(X)+H.c= - z— P9, P+ H.c. operatorsy j, which have known correlation functioisee
2 8mg Appendix A
(10 ~ 7PpenAxy. : :
It is evident that to lowest order in perturbation theory the
[Actually, the regularized density operators always commuteonductance does not depend on the nonlinear contributions
at equal pointsc=x’ (see Ref. 1band we do not have to Gy=ge?’/2x (see Refs. 9 and)3The calculation ofG, is
care about the order of operators in E@S, (7), and(10).] straightforward, although quite lengthy, and it is outlined in
In a homogeneous system the kinetic coefficients do noAppendix A. Here we show how to determine in perturbation
depend on the coordinate, i.,eg®(L—x)=G, and theory the dependence of the thermopower on the correlation
T 1o@(L—»)=G,7, and the current depends only on the parameteg without explicit calculations.
integral quantities of the system, that is, the bias voltage (  Let us consider the canonical transformation
and the temperature differencAT). The thermopower co-
efficient S is given simply by the ratio of the two transport

- 1
coefficients: d(x,t)=gx, Hq’:TgHX’ (14)
\% G
S|J:0=E =— G_AVT' (1)  which allows us to eliminate the factgrin the harmonic part

of the LL Hamiltonian, Eq(7). The current operatojsandq
Since the electron dispersion at the Fermi energies is weak the correlation functions can be reexpressed in terms of
[pr(dve/dEE)<1], we can evaluate the thermopower coef-the current operators j©=—(e/2m)gx and q©
ficient perturbatively. To lowest order in perturbation theory = —(s/4m)d,xdyx for “noninteracting particles,” as fol-
with respect to the nonlinearity coefficie(k), one gets lows:
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e s renormalization grougRG) sensé We started with Eq(5)
== 5 0®= Vgi®, gq=- E(gxq)ﬁtq):q(o)- [see also Eq(5.3) in Ref. 15, where the bare couplings are
(15) determined by the chosen form of the electron energy disper-
sion (i.e., the energy-momentum relatjorThe operators in
Now the structure of the correlation functions is obvious: the perturbation Hamiltonian, E¢5), are (formally) “irrel-
evant” and thus the perturbation calculation is justified.
* B a0 iy (O) ge? However, in a RG analysis other terms with the same scale
szgfo dtfo AT ™ (=IN]P(0)o=5—, (16 dimension ¢=3) could be generated by the loop correc-
tions. Consequently, in Eq21) only terms of leading order
in g<1 can be trusted from scaling arguments. We left in

\/5 % B . O _ix\i (0) ) this formula the full dependence @nbecause it reproduces
GAT:TL dtfo dM(Teg™ (I JTDSI(—i8))o the correct result for noninteracting electrorg=(1) and
represents a possible scenario of thermopower crossover
=A(g%+CW(s,T), (17 from repulsively interacting 1D electrong€1) to a LL

. . . i i >1).
where C; is a numerical constarits value can be deter- with a bulk attraction §=>1)

mined by a perturbation analysis: see Appendix Wotice
that the functionV(s, T) does not depend explicitly either on  1ll. THERMOPOWER OF AN INFINITE LUTTINGER
the Fermi velocity or on the correlation parameterThe LIQUID WITH AN IMPURITY

dependence o on the plasmon velocity and temperature In a gapless 1D electron system the effects induced by the

can be found by considering the lingt=1, where the ana- . o )

X . . oo . nonlinearities of the electron spectrum around the Fermi en-
lytic expression for the dispersion-induced thermopower 'Sergy are weak, and as we showed in the previous section they
known (see, e.g., Ref. 18 are suppressed further by the repulsive interacfronghly

5 by a factor ¢/s)? in the transport coefficients Drastic
m l t?U_F (19) changes in the properties of a LL are caused by local impu-
3 evg JEg’ rity potentials.

. The conductancé&,, of an infinite LL with an impurity
From Egs.(11), (16), (17), and(18) one readily gets was calculated for the first time in Ref. 3, where it has been
shown thatG,, scales with the temperature as a power-law
meT 1 function with an exponent that depends strongly on the cou-
— 32 (1+Cy)° (19 pling constant. It is natural to assume an analogous behavior
) ] ) . for the thermal-electric coefficier® 1 (we will prove this
Thus, by making use of dimensional analysis supplementegssymption later Thus, from purely dimensional consider-
with scaling arguments, one can dep to a numerical con-  ations, one could expécta linearT behavior of the
stan} the expression for the dispersion-induced ther"‘impurity-induced" thermopower S(Li)(T,g) even for
mopower. strongly interacting systems. However, unlike the case of
) X dispersion-induced thermopower, the dependencS(L'bfon
SO(T g)=— ™ 9(g°+Cy) l JUE (20) the dimensionless parametgcannot be obtained from such
L (19 dimensional analysis.

In this section we evaluate analytically the current in-
duced by the temperature differendg;, and determine the
dependence of the thermopower of a LL on the interaction
strength. Since it is well known that even a weak bare po-
tential strongly suppresses at low temperatures the transport

) B 9(g?+1) of a charge in a LL, it is reasonable to consider, from the
St (T’g)_TSF(T)' (2D very beginning, the case of weak electron tunneling, for

which the problem can be solved by a tunneling Hamiltonian

It follows from Eq. (21 that the repulsive electron-electron method.

interaction §<1) suppresses the thermopower of a homo- \we start with a general expression for the tunnel current
geneous LL. For strongly interacting electroi®., for g in a system of interacting electrofisee, e.g., Ref. 20

<1) the above resulfEq. (21)] coincides with the simple
estimateS{Y ~gS: presented in the introductory section of X X
the paper. In this limit our result is consistent with the ex- _ * * A 27

pression given in Eq8) of Ref. 5[we believe that the ap- J_ZWGJ dplf dPe[Tp, f_mdg Ar,(P1.2)
pearance of the factarin the denominator of E(8) in Ref.

5 is a misprint. Note that in Ref5 a somewhat different X A1, (p2,eteV)[fr(eteV)—fr (e)], (22
perturbation Hamiltonian was used: namely, the first term

in our Hamiltonian[see Eq.(5)]. Actually, the form of the where f{(g)=[exp{e/T}+1] ! is the Fermi-Dirac distribu-
dispersion-induced terms in a LL theory is not univefsal  tion function, At(p,e) is the electron spectral density, and

Sr(T)=~—

In Appendix A it is shown, by a direct calculation of the
correlation functions in perturbation theory, tf&=1, and
our final result for the dispersion-induced thermopower is

— —0o0
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?p b, is the bare tunneling amplitude. We assufsee, e.g., adopted. To calculate these Green'’s functions we will use a
L S A bosonization technique. The conventional proced{see,
Ref. 19 that the tunnel probabilityT|* depends on the mo-

N £ onl f the t s of the 1D vii e.g., Ref. 2is to represent the fermion field operat¥(x,t)
mentum ot only ?n,e ofthe two segments ofthe 11 wisay, as an exponential of the boson fieli$x,t) and® (x,t) with
for definiteness “1) and that it is a smooth function of the

. . ..~ the commutation relationg® (x),®(x’)]=2mi sgnk—x"),
momentum fomp~ pg . Under this assumption we may write BO0), D (X')]=2mi sgng—x)

yielding
2
T 2= |7, 1.(qu)|?=6 t2+ —vr ) 1 i
| pl,p2| | rprtde | rp.ro| ts &E Frads Vo (0= U;rnr ox _E[rmcbm(xvt)
2 V2ma
+46, _ t2+ v,:rlql)
TR R 9B +®m(x,t)]]. (29
(23

Here pm_rmpF+qmv m=1,2,r,,=*1, and the parameters Here a is a cutoff parametera~vg/Eg) and UL,rm is a
tSR tS =(Eg) will be specified later. unitary raising operator which increases the number of elec-

In the linear response approximation the tunnel current igrons on the branch,, by one particle, but does not affect the
a sum of two currents]=J,(T) +J,7(T): oneinduced by bosonic excitations. For our purpose its specific form is ir-
the voltage drop/ across the junction and the other inducedrelevant.

by temperature differencAT between two segments of the  If we neglect tunneling we are dealing with two semi-
wire, i.e., infinite LL's with an open boundary which reflects the elec-

trons perfectly. It is helpful to formulate the corresponding

) o 0 * - ) boundary condition in terms of mirror images; tHé@n,
Jy=2me VrZF %dqlffwdqufwdsITrl,rz(ql)l VL m(X)=—Vgn(—X). The boson fields yielding this
1z boundary condition in the momentum representation take the
ﬁf(s) form (see Appendix B
XAT(ry,dg,e)Ar(ra,dz,8) —— (24)

(C] ——'f‘dp\/— b,—b’)cog =
m(X) =i g p( p p) SX )
Fi.rg J =

KA1 1,01.8)AT(1 5.0 ,8) e (8) (25 Pm(X)= f a2 (b”’)s'”(_x) (30

where now the special functions are taken at a mean temvhereb, and bT are the standard bosonic annihilation and
peraturel and the derivatives of the distribution function are creation operators[()p ,b /]=dp,pr) and ep—s|p| is the en-

Jar=2meAT >, dqlf_ dqu_ dsITrl,rz(ql)I2

given as ergy of the bosonic eXC|tat|on with momentym
With the help of Eqs(29) and(30) it is straightforward to
of(e) 1 1 if(e) & 1 evaluate the fermion Green’s functions. In particular, for
de AT e\ JT  4T? ' iG~ one gets in the vicinity of the contack{0) the fol-
COS"F(E) coslf ﬁ) lowing expression:
(26)

+
To evaluate the kinetic coefficients,, and G,t, one <qf”"fm(x’t)lljmﬁm>

needs to know the exact analytic expression for the spectral 1 1 - (LUg-+r )2
function A1(q,e) at a finite temperature. By definition, ~ : m
2mal (. vpx) sinh( 7T mx)
1 '3
ATm(rqum7w):__lm[GFm(qaw)]a (27)
T 1 7TTm7] (lg—rp/2
where Gfm(q,w) is the Fourier transform of the retarded X L ven\| sinh@wT,7) . (3D
Green'’s function: =
GR(x.)=—iO,(H{P, (x.t), ! wherey=t—x/s apd n=t+x/s. '
rm( ) HO( rm( ) rm}+> The next step is to calculate the Fourier transform of the
—O4(D[G” (1) —G= (x,1)] (28) Green’s functions. It is helpful now to introduce new
’ r ’ .

variables Xisz(tix/s)_and Q.=(wxks)/2 and the

Here ®4(t) is the Heaviside step function and the standarddimensionless temperatuie=7Ta/vg. In terms of these
definitions forG™ andG*= (see, e.g., Ref. 10, Sec. 3.dre  variables the Fourier transform o~ has the form
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Tl/g 1
iGr>m(9+,Q,) 3207 gT p( )J dX+J dXx_
i 1 X ]@eHrpir o q X, |Wo-rmr2
Xexﬂ[ﬁ(mx—*“—x” x—_ﬁsmhx} x+_i?sinhXJ (32
The spectral densitp(w,q) is expressed througB~ (w,q) by the standard relation
1 .
A Qe Q)= o ImiGT (Q4 Q) +IG] (—0y,—Q )], (33

Since we are interested in the linfit< 1, the integrals in Eq(32) can be taken analytically. After some algebra we get the
analytic expression for the spectral density function of a spinless LL with an open boundary, at finite temp&ratares

_ Q. +Q_\ [~ QX 1| ez
Arm(QJr,Q):WrTl/glcosl‘(— fﬁwdx, COE< T )(coshx_)
. a_x, 1 (Lg—r )2
><f_achJr cos( - )(coshx+)
‘F( |+ | ,6’Q+) 2 F(l[— M|+ i /39) 2
1 o Q,.+0 || |4 2 4 2m i
_ m(zﬂl@ 1008*( oT 11 11 o=t (34)
Flzjg*rm F(E[E‘rm})
Sw—rwek) T o=1

Substituting Eq(34) into Egs.(24) and(25) and performing
the integration over the momenta and enefgge Appendix
C), one gets the desired kinetic coefficiefltere we restore
the normal dimensionalijy

2 2e

Gy=or ZRI(T), Gyr— o —KET 2 RU(T)
\% 2 h ’ AT— 3 ﬁ ’
(35

where the renormalization coefficien®)(T) (j=1,2) are
given by

2j+1 2(g=1)

2

RJ(T)= (36)

2j+1 1 k Ta
2 g ﬁv
Here B(x,y)=T(X)['(y)/T'(x+y) is the beta function and

the effective transmission probabilit§<1 at the Fermi en-
ergy is defined as

2 20 \?
Ol

> (130 o, +tRO, 1) (37)

ri.,fo
The expression for the conductance given in B§) coin-
cides with the known resuft?! One can see from Eq¢35)
and (36) that the thermoelectric cross coefficie®t 1 is

tance. Consequently, the influence of the interaction on the
thermopower is far less dramatic than that on the transport
coefficients. The thermopower of a LL is still a linear func-
tion of temperature® as is the thermopower of a system of
noninteracting electrons. The electron-electron interaction in
a LL model leads only to a temperature-independent multi-
plicative renormalization of the thermopow8g of the free
electrons:

ST, 9)=5——=Sy(T). (39)

2+ g
For an infinite LL the renormalization factor decreases with
increase of the interelectron interaction, and for strongly in-
teracting particles{(g<1)=(3/2)9%.

IV. CONCLUSION

In this paper we have evaluated the thermopower of an
infinite spinless LL induced byi) the dispersion of the elec-
tron spectrum near the Fermi energy and (by the back-
scattering of the electrons by an impurity. We showed that
the thermopower treated by perturbation the@vith respect
to the nonlinearity of the electronic spectrum and the bare
electron tunneling amplitudeis described by the Fermi-
liquid formulas renormalized by interaction-dependent fac-

renormalized by the interaction in analogy with the conduc-ors. For arninfinite LL the renormalization coefficients, Egs.
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(21) and (38), are decaying functions of the interaction the measured thermopower would be associated mostly with
strengthV,~e?, since the correlation parameter is equal toimperfections in the wirdimpurities, barriers at the bound-
g 1= \1+V,/whve for spinless electrons. aries between the 1D wire and the leads,)etc.

To explore whether the electron-electron interactions sup-
presses the thermopower of 1D electron systems, we have
solved the problem for an infinite LL. In real experiments the
LL wire (e.g., a carbon nanotuffeis connected to 3D or 2D This work was supported by the National Research Coun-
metallic leads where the electrons can be regarded as nonigi through the Twinning Program 1999-2000 and partly
teracting particles. It is known that the transport properties ofl.V.K.) by the Swedish Royal Academy of Scien@€vA ).
a LL wire connected tqnoninteractiny electron reservoir |.V.K. acknowledges the hospitality of the Department of
differ from the transport properties calculated for an infiniteApplied Physics, CTH/GU. The research of E.N.B. and U.L.
LL, even for adiabatic contacts. The best known example ofvas also supported by the U.S. Department of Energy, Grant
such a behavior is the conductan@g of an impurity-free No. FG05-86ER45234.
LL wire. For an infinite LL, formallyG, =gG, (G, is the
conductance quantumG,=e?/h for spinless electrons
while for a LL wire connected to lead$;, =G, [the so-
called “no renormalization theorem” for the conductance of ~ The density operatorsy ;(t,x) in momentum representa-
a LL (Refs. 23-28]. Note that the heat conductanGs is  tion take the form(see, e.g., Ref.)2
also different for the above two situatiofsee Refs. 27 and
28).

To estimate the thermopower of a finite LL wire adiabati- Y _J' —i(px—ept)

- - : pn(X )= %+ [b e P

cally connected to leads of noninteracting electrons we will
follow the approach proposed in Ref. 29. In the case of weak Foitpxe et
tunneling through the impurity, the voltage drop across the +hpe S P (A1)
impurity and the one measured between the leads are differ-
ent quantitzies. Thiszfact is evident in the limit of strong in- 3 1 (4w .
teractiong°~%vg/e°<1 when the Coulomb blockade is pJ(XJ):_OJF_J dp\/isgr(p)[bpempxept)
pronounced; the shift of the chemical potentials of the leads L 27) - Sg
Au=eU cannot change significantly the voltage drap
across the impurityplaced in the middle of a sufficiently
long LL wire). In a previous study it has been shown that
V=g2U for arbitrary interaction strengﬁ?.Therefore, to re- whereL is the size of the systeni(~»), Ny is the number
late (at least qualitativelythe thermopowe&)(T,g) evalu-  of extra (above the Fermi levglelectrons,J, is the zero-
ated above to the thermopowﬁ&{,)(T g) of a LL wire adia- mode currentp,, and b’r are the standard bosonic annihila-
batically connected to leads of noninteracting electrons, wé&on and creation operators[lip,b ]=08pp), and e,
have to replace first the voltagéin our formulas byg?U. =s|p| is the energy of bosonic eXC|tat|on with momentpm
Since this substitution affects only the voltage induced cur- By making use of EqSAl) and(A2) it is straightforward
rent, it influences the thermopowsf;'\,)(T,g)zS(,_')(T,g)/g2 to calculate the Matsubara Green functions for the density
and nowS\\)(T,g) ~ So(T)/g> Sy(T) for strongly interacting ~ operators [ —):
particles. We see that in a real situation, when the voltage
drop is measured between the leads the electron-electron in- - .
teraction in the wire enhances the impurity-induced ther- (Toon(=i7.X)pn(0Y))
mopower. It supports our clafirbased on estimation of the o L
thermopower in a phenomenological model of charge and g cosf{;(x— _EH
heat transport in a LL. An explicit calculation of the corre- _2_2 gionty _ ,
lation functions in the presence of the leads remains a subject 2m sin?‘{ @n '—}
for future studies.

Finally, we may inquire about the effect of the leads on
the dispersion-induced thermopower. In the absence of elec-
tron backscattering the leads keep the conductance of a LL
wire ur_1ren_orma|izea?‘25 i.e., G =e?/h. Therefore, the (F.p5(—i7X)p5(0y))
dispersion-induced thermopower of a finite LL wire,

SO(T,9)=9S9(T,9), is suppressed even stronger by the wy L
interelectron interaction than the above calculated quantity 1 — cos s

S . For strongly interacting d<1) particles S{(T,9) = m; e'“n"wy, =
~0%Se(T)<S(T) [Sk is the corresponding Fermi-liquid sinl-{
thermopower, Eq(18)]. Thus one could expect that in ex-
periments involving wires of strongly correlated electrons (A4)
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<-‘|- pn(—i7.X)p5(0y)) ing of two independent(in the absence of tunneling
7 ’ ’ segments. Let us continue the fermion fidd (x) from the

sin?{an (x— LH segment “12)" to the segment “21).” The fermion field ¥
=

1 2 2 must satisfy the condition
= n —
272 B4 € n k{wn L
sinh— =
2 VL m(X)==¥rm(—X) (B1)

(A5)
on each segmenn=1,2. Hence the densitigsy ;, g and
Herepy ;=p\, J(O 0) andw,=i2mn/B is the Matsubara fre- . ot
quency(ﬂ T°1 'n=0+1.+2..). One readily gets from the field operators have to obey the relatiops(x)
Eqs. (A3)(A5) =pr(=¥), pn)=pn(=X). paX)==ps(=X), O(¥)
=0(—x), and®d(x)=—P(—x). It is natural to consider
that for the case of nonininteracting electrorgs=(1) the

(pnpN) = wsLE eB:n—m_l, fields ® and® are the stationary waves
1 € 5 (0) =i o % _ht 2
<pJPJ>: WSgL% eﬁgmm_l, <pJpN>=0. (AG) m (x)=Ii f—oo dp \/ e (bp bp)CO UFX ,

In perturbation theory the kinetic coefficients can be repre-

sented as the time-ordered product of theand p; density o +oo 20k i |
operators. In particular, far(® in the static limitw— 0 [see O'(x)= f_m dp\/ ——(bp+by)sin —=x], (B2
Eq. (13)], one gets P F

endsig 118 B L whereb, and b’r are bosonic annihilation and creation op-
limgf dhf dTlf dx; explilw) erators [bp,b ] 8p.pr) and e,=vg|p|. Substituting Eq.
=0 70 0 0 (B2) into the LL Hamiltonian, Eq(4), we observe that the

. Hamiltonian is not diagonal in the annihilation and creation
X[(Tpa(=IN,X)pn( =N, X) p3(0X) operators. It is diagonalized by the Bogoliubov’s transforma-
tion, and the transformed field3,,(x) and ®,(x) take the
form

ad@=A

L—oo

X pn(—i7y,X) pn(—171,X0) pn(—171,X1))

+3(T,ps(—iINX)pn(—iN,X)py(0X)
X py(—i7y,X)py(—iT,X)pn(—171,X0))]. (A7)

Wick’s theorem allows us to reduce the time-ordered product » +°°d [2s b —p! €p
of operators to the sum of the product of Green’s functions. I L ge. (bp—bp)cog —
In our case the thermoelectric coefficient takes the form

ew s3 /
ocD=A lim—= Jd)\f dflf dx; expliA w) Pn(x) =009 J dp (b +b)sm(—x)

0,x)=002%x) 01

x|, (B3

ot
X[(Tps(—iN,X)ps(03) X (Ton(—iN,X) )
X py(—i 71,01 ((pap3) + (orpn)), (A8) where the unitary operatdy is
wherew=iw. Substitution of the Green'’s functions into the
last equation yields exp{ f dq[bqu_q—b b q])_ (B5)
2
@_Ae mg+l) (A9)
7R 6
Here tanh(2)=(1-g?/(1+g?). The energye, in Eqs.(B3)
and(B4) is now the energy of plasmons=s|p| in a LL.
APPENDIX B
Here we derive foIIovx_/ing Ref. 20 the e_xpr_essions for the APPENDIX C
momentum representation of the bosonic fiefBéx) and
O(x) for a LL with an open boundary. The impurity poten-  In this appendix we list the analytical expressions for the

tial at x=0 is modeled by the boundary which reflects elec-integrals of thd" functions appearing in the evaluation of the
trons perfectly. Thus one may regard the LL wire as consisttL thermopower:
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= . . I2(a+B)I(2a)T(2p)
fﬁxdx|1“(a+|x)|2|F(,[3+|x)|2=277 T@(at ) , (Cy
o i 2 [ 2 27z T%(a+B+iz)['(2a)T(2B)
f_de{X I' a+ E(X+Z)) g+ E(X_Z)) ]= (atp) T@(at B) , (C2
* . . 2 I?(a+B)I(2a)L(2p)
fmdx{x2|l“(a+|x)|2|F(,8+|x)|2}=(Za:;;il) afé(a+2)) a (<)

The first integral can be found in the tables of integfakse, e.

Eq. (C1).
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