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Thermopower of an infinite Luttinger liquid
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The thermopower of a Luttinger liquid~LL !, originating from the energy dispersion of electrons at the Fermi
level and/or from the backscattering of electrons by impurities, is analytically evaluated. It is shown that in
both cases the thermopower is described by a corresponding Fermi-liquid formula renormalized by an
interaction-dependent factor. For an infinite LL the renormalization coefficients decrease with an increase of
the electron-electron interaction. In a realistic situation, when a LL wire is connected to leads of noninteracting
electrons, the dispersion-induced thermopower in the limit of strong repulsive interaction is strongly sup-
pressed,SW

(d);g2S0
(d)!S0

(d) ~here S0
(d) is the corresponding Fermi-liquid value for the thermopower andg

!1 is the LL correlation parameter!, while the impurity-induced thermopowerSW
( i );S0

( i )/g is enhanced by the
interelectron interaction.

DOI: 10.1103/PhysRevB.65.075115 PACS number~s!: 72.15.Jf, 71.27.1a
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I. INTRODUCTION

The transport properties of a Luttinger liquid~LL ! differ
strongly from those known for the Fermi liquid,1,2 with one
of the most interesting examples pertaining to charge tra
port through an impurity. In a Fermi liquid~FL! the trans-
mission amplitude of an electron through a local defect~im-
purity! is fully determined by the shape of the impuri
potential and it is a common assumption for metals that
amplitude is a smooth function of the electron energy n
the Fermi energy (EF), i.e., «;EF . In contrast, the tunnel
ing of electrons in a LL depends primarily on the propert
of the LL wire and it is strongly suppressed by the repuls
electron-electron interaction.3 A simple physical explanation
of this effect can be obtained, for instance, in the limit
weak interaction. It was shown4 that for a weakly interacting
one-dimensional~1D! electron system the bare electro
transmission amplitude is renormalized by the interelect
interaction and that it vanishes in the vicinity of the Fer
energy, i.e.,tR(«→EF)→0. Consequently, the temperatu
strongly affects the tunneling of a charge in a LL. As a res
the conductance of a LL wire scales with the temperature
a power-law function@for instance, for spinless electron3

G(T)}T2(g2121), whereg is the correlation parameter of th
LL #, whereas for a wire of noninteracting electrons the c
ductance does not depend on temperature at low temp
tures.

If the temperatures of the leads attached to a wire
different, an electric current is induced by the voltage dr
and by the temperature gradient across the system. In a
wire both contributions to the current are power-law fun
tions of the temperature with interaction-dependent ex
nents. However, the ratio of the corresponding kinetic co
ficients, i.e., the thermopower, is affected less by
interaction; that is, it remains a linear function of the te
perature as in the case of noninteracting electrons5,6 ~see also
0163-1829/2002/65~7!/075115~9!/$20.00 65 0751
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Ref. 7 for a calculation of the thermopower using the Hu
bard model!.

For noninteracting particles the thermopower coefficie
S0(T) is conventionally described, in the linear regime,
Mott’s formula as a logarithmic derivative of the condu
tanceG0 evaluated at the Fermi energy~see, e.g., Ref. 8!:

S0~T!.2
p2

3

kB
2T

e S ] ln G0~«!

]« D
«5«F

. ~1!

In a previous paper6 we have shown via a phenomenologic
model that for a LL connected to leads of noninteracti
electrons the thermopower can be represented by a Mott
formula with an additional interaction-dependent renorm
ization factor. Although the assumptions made in Ref. 6
reasonable and the model gives a simple and qualitativ
correct description of charge transport in LL wires, there
still no consistent quantitative theory of thermoelectric
fects in LL’s. In this paper we consider aninfinite LL and
evaluate analytically the thermopower induced~i! by the
nonlinearities in the electron spectrum and~ii ! by back-
scattering of the electrons from a single impurity.

It is physically evident that for an ideal~impurity-free! LL
the thermopower coefficient is zero.5 This is a direct conse-
quence of thelinear spectrum of electrons in the Tomonag
Luttinger model. Nonlinear corrections to the electron sp
trum in the energy region«;EF will induce a finite
thermopower coefficient.5 The corrections are small, an
they can be treated by perturbation theory. Thus one
readily estimate in this case the dependence of the t
mopower on the interaction strength by using simple dim
sional analysis, as shown below.

Let us consider first the limit of strong repulsive intera
tion, g5vF /s!1, wheres is the velocity of the plasmons in
a LL. In the conventional definition of the thermopower c
efficient it is expressed as the ratio of two kinetic coef
©2002 The American Physical Society15-1
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cients, i.e.,S52GDT /GV , that express the electric condu
tance due to the voltage drop (V) and due to the temperatur
difference (DT) across the system; that is, the electric c
rent through the system is given byJ5GVV1GDTDT. For
an ideal infinite LL the conductance isGV5(e2/h)g ~see
Refs. 9 and 3!. The cross coefficient~thermoelectric conduc
tance! GDT is fully determined by the nonlinearities in th
electron spectrum. The first~quadratic! correction to the lin-
ear electron spectrum at«;EF is proportional to]vF

2/]EF .
Therefore, to the lowest order in perturbation theoryGDT

}]vF
2/]EF , and in order to restore the correct dimension

GDT ~it is dimensionless in the unitse5\5kB51! we have
to compensate the dimension of the coefficient of the spec
nonlinearity by the factorT/s2 ~T is the average tempera
ture!. This yields the following estimate for the dispersio
induced thermopower of a LL in the limit of strong intera
tion, SL

(d)(T,g).(kB /e)(gkBT/vF)(]vF /]EF). In Sec. II we
prove the validity of these simple considerations~i! by mak-
ing use of scaling arguments and~ii ! by explicit calculations
of SL

(d)(T,g) through perturbation theory.
The thermopower of a LL can be induced also by t

backscattering of the electrons by impurities in the wire. F
repulsive interaction the potential that causes the backsca
ing of charged excitations is a relevant perturbation3 in a LL.
Under such circumstances and at low temperatures, one
replace the impurity potential by a weak link~junction! be-
tween two semi-infinite segments of a LL wire, and t
charge transport through the junction can be evaluated
turbatively by making use of the tunneling Hamiltonia
method. To calculate the thermopower of a LL with an im
purity, we begin with the general formula for the tunnel cu
rent in an interacting electron system~see, e.g., Ref. 10!.
First, we derive analytical expressions for the finit
temperature spectral densities in a LL with free boundar
in the literature, thespectral density functionof a LL is
known only in the zero-temperature limit,11–13 although
finite-temperature expressions for the density of states h
been known and were used in a number of papers for
evaluation of theI -V characteristics of a LL~see, e.g., Ref.
14!. With the help of these formulas we evaluate the kine
coefficientsGV andGDT and show that electron-electron in
teractions renormalize the thermopower coefficient multip
catively. The renormalization factor for aninfinite LL de-
creases with an increase of the interaction strength. At
glance this statement seems to contradict our previous re
~see Ref. 6!, where an enhancement of the thermopower w
predicted for a LL wire connected to leads of noninteract
electrons. However, the two problems under study are
identical. In the case of a strong impurity one has to take i
account the ‘‘Coulomb blockade’’ effect in the wire to rela
the thermopower coefficientSL

( i ) , calculated for an infinite
LL, to the one,SW

( i ) , for a wire connected to leads of nonin
teracting electrons. We show that for the last case the t
mopower coefficient is enhanced by the interaction.

The paper is organized as follows. In Sec. II t
dispersion-induced thermopower is evaluated analytically
~i! simple scaling arguments and~ii ! by perturbation theory.
In Sec. III the tunnel Hamiltonian method is applied to t
07511
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calculation of the thermopower coefficient in a LL. In Se
IV we summarize the main results of the paper and reform
late them for the case of a finite LL wire connected to lea
of noninteracting electrons. Technical details of the calcu
tions are given in the appendixes.

II. DISPERSION-INDUCED THERMOPOWER

Let us consider an infinite 1D system of interacting ele
trons. We will take into account the nonlinear~quadratic!
correction to the linearized electron spectrum at«;EF ~in
the following we put\5kB51!:

Er~k!5vFr ~k2kF!1A~k2kF!2, ~2!

where the indexr 561 denotes the right (R: r 511) and
the left (L: r 521) branches of the 1D electron spectrum
and A5(vF/2)(]vF /]EF) is the nonlinearity paramete
which is assumed to be small,A!vF /pF .

The Hamiltonian of the system takes the form

H5H0 f1H int5(
r
E dx C r

†~x!e r~¹x!C r~x!

1
1

2 (
r ,r 8

E dxE dx8Ur ,r 8~x2x8!r r~x!r r 8~x8!. ~3!

Here e r(¹x)52 ivFr¹x2A(¹x)
2 is the electron energy op

erator,r r(x)5C r
†(x)C r(x) is the electron density operato

and Ur ,r 8(x2x8) is the interaction potential, which we as
sume in the following to be short ranged, i.e.,U(x)
5u0d(x).

The Hamiltonian given in Eq.~3! with A50 in the
bosonic representation is the standard Hamiltonian of a s
less LL ~see, e.g., Ref. 2!:

H05
ps

2 E
2`

`

dxFgrJ~x!rJ~x!1
1

g
rN~x!rN~x!G . ~4!

Here s5vF /g is the velocity of plasmons andg21

5A11u0 /pvF is the correlation parameter for spinle
electrons. The density operatorsrN(J)(x)5rR(x)6rL(x)
obey the anomalous commutation relation@rN(x),rJ(x8)#
52( i /2p)]xd(x2x8).

The dispersion of the electron spectrum results in unh
monic bosonic terms15 that describe the interaction of plas
mons in the LL:

HA5A
p2

12 E2`

`

dx@rN
3 ~x!13rN~x!rJ

2~x!#1H.c. ~5!

It is useful to reexpress the Hamiltonians in Eqs.~4! and~5!
in terms of bosonic fieldsF(x) andP(x), obeying the ca-
nonical commutation relations

rN5
1

2p
]xF, rJ522P52

1

2psg
] tF,

@P~x!,F~x8!#52 id~x2x8!. ~6!
5-2
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Then the Hamiltonian of our model takes the form~see also
Ref. 15!

H5
1

8psgE2`

1`

dx@~] tF!21s2~]xF!2#

1
A

96p E
2`

1`

dxF ~]xF!31
3

~sg!2 ~]xF!~] tF!21H.c.G .
~7!

In the linear response approximation the average dc
rent

J~x!5E dx8s~1!~x,x8!E~x8!1
1

T E dx8s~2!~x,x8!¹T~x8!

~8!

is determined by two kinetic coefficientss (1),(2), which, ac-
cording to the Kubo formalism16 ~see also Ref. 17!, can be
expressed through the current-current and energy-cur
correlation functions

s~1!~x,x8!5E
0

`

dtE
0

b

dl^ j ~2 il,x! j ~ t,x8!&,

s~2!~x,x8!5E
0

`

dtE
0

b

dl^q~2 il,x! j ~ t,x8!&, ~9!

whereb[1/T is the inverse temperature,j 52(e/2p)] tF is
the charge current operator, andq(x) is the energy curren
operator defined by the continuity equation] th(x)1]xq(x)
50 with the Hamiltonian densityh(x) given as H0
5*dx h(x). It is easy to find that in terms of the densi
operators the energy current takes the form

q~x!5
ps2

2
rJ~x!rN~x!1H.c.52

s

8pg
] tF]xF1H.c.

~10!

@Actually, the regularized density operators always comm
at equal pointsx5x8 ~see Ref. 15! and we do not have to
care about the order of operators in Eqs.~5!, ~7!, and~10!.#

In a homogeneous system the kinetic coefficients do
depend on the coordinate, i.e.,s (1)(L→`)[GV and
T21s (2)(L→`)[GDT , and the current depends only on th
integral quantities of the system, that is, the bias voltageV)
and the temperature difference (DT). The thermopower co-
efficient S is given simply by the ratio of the two transpo
coefficients:

SuJ505
V

DT
52

GDT

GV
. ~11!

Since the electron dispersion at the Fermi energies is w
@pF(]vF /]EF)!1#, we can evaluate the thermopower coe
ficient perturbatively. To lowest order in perturbation theo
with respect to the nonlinearity coefficient~A!, one gets
07511
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s~1!~x,x8!.E
0

`

dtE
0

b

dl^T̂cj ~2 il,x! j ~ t,x8!&0 , ~12!

s~2!~x,x8!.pes3gE
0

`

dtE
0

b

dl^T̂cq~2 il,x! j ~ t,x8!

3S1~2 ib,0!&0 , ~13!

whereS1(2 ib,0)52*CĤA(t8)dt8 andĤA(t8) is the non-
harmonic part of the Hamiltonian, Eq.~7!, in the interaction
representation. The thermal average^¯&0 is taken with re-
spect to the unperturbed Hamiltonian, Eq.~4!, and the sym-
bol T̂c denotes the ordering of operators along the contouC
in the complex time plane~see Fig. 1!. The correlators in
Eqs. ~12! and ~13! can be rewritten in terms of the densi
operatorsrN,J , which have known correlation functions~see
Appendix A!.

It is evident that to lowest order in perturbation theory t
conductance does not depend on the nonlinear contribut
GV5ge2/2p ~see Refs. 9 and 3!. The calculation ofGDT is
straightforward, although quite lengthy, and it is outlined
Appendix A. Here we show how to determine in perturbati
theory the dependence of the thermopower on the correla
parameterg without explicit calculations.

Let us consider the canonical transformation

F~x,t !5Agx, PF5
1

Ag
Px , ~14!

which allows us to eliminate the factorg in the harmonic part
of the LL Hamiltonian, Eq.~7!. The current operatorsj andq
in the correlation functions can be reexpressed in terms
the current operators j (0)52(e/2p)] tx and q(0)

52(s/4p)]xx] tx for ‘‘noninteracting particles,’’ as fol-
lows:

FIG. 1. The integration contourC in the complex time plane.
5-3
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j 52
e

2p
] tF5Ag j ~0!, q52

s

4p
]xF] tF5q~0!.

~15!

Now the structure of the correlation functions is obvious:

GV.gE
0

`

dtE
0

b

dl^T̂cj ~0!~2 il! j ~0!~ t !&05
ge2

2p
, ~16!

GDT.
Ag

T E
0

`

dtE
0

b

dl^T̂cq
~0!~2 il! j ~0!~ t !S1~2 ib!&0

5A~g21C1!W~s,T!, ~17!

where C1 is a numerical constant~its value can be deter
mined by a perturbation analysis: see Appendix A!. Notice
that the functionW(s,T) does not depend explicitly either o
the Fermi velocity or on the correlation parameterg. The
dependence ofW on the plasmon velocity and temperatu
can be found by considering the limitg51, where the ana-
lytic expression for the dispersion-induced thermopowe
known ~see, e.g., Ref. 18!:

SF~T!52
p2

3

T

evF

]vF

]EF
. ~18!

From Eqs.~11!, ~16!, ~17!, and~18! one readily gets

W5
p

3

eT

s2

1

~11C1!
. ~19!

Thus, by making use of dimensional analysis supplemen
with scaling arguments, one can get~up to a numerical con-
stant! the expression for the dispersion-induced th
mopower:

SL
~d!~T,g!52

p2

3

g~g21C1!

11C1

T

evF

]vF

]EF
. ~20!

In Appendix A it is shown, by a direct calculation of th
correlation functions in perturbation theory, thatC151, and
our final result for the dispersion-induced thermopower is

SL
~d!~T,g!5

g~g211!

2
SF~T!. ~21!

It follows from Eq. ~21! that the repulsive electron-electro
interaction (g,1) suppresses the thermopower of a hom
geneous LL. For strongly interacting electrons~i.e., for g
!1! the above result@Eq. ~21!# coincides with the simple
estimateSL

(d);gSF presented in the introductory section
the paper. In this limit our result is consistent with the e
pression given in Eq.~8! of Ref. 5 @we believe that the ap
pearance of the factorg in the denominator of Eq.~8! in Ref.
5 is a misprint#. Note that in Ref. 5 a somewhat differen
perturbation Hamiltonian was used: namely, the first te
in our Hamiltonian@see Eq.~5!#. Actually, the form of the
dispersion-induced terms in a LL theory is not universal@in a
07511
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renormalization group~RG! sense#. We started with Eq.~5!
@see also Eq.~5.3! in Ref. 15#, where the bare couplings ar
determined by the chosen form of the electron energy dis
sion ~i.e., the energy-momentum relation!. The operators in
the perturbation Hamiltonian, Eq.~5!, are ~formally! ‘‘irrel-
evant’’ and thus the perturbation calculation is justifie
However, in a RG analysis other terms with the same sc
dimension (d53) could be generated by the loop corre
tions. Consequently, in Eq.~21! only terms of leading order
in g!1 can be trusted from scaling arguments. We left
this formula the full dependence ong because it reproduce
the correct result for noninteracting electrons (g51) and
represents a possible scenario of thermopower cross
from repulsively interacting 1D electrons (g,1) to a LL
with a bulk attraction (g.1).

III. THERMOPOWER OF AN INFINITE LUTTINGER
LIQUID WITH AN IMPURITY

In a gapless 1D electron system the effects induced by
nonlinearities of the electron spectrum around the Fermi
ergy are weak, and as we showed in the previous section
are suppressed further by the repulsive interaction@roughly
by a factor (vF /s)2 in the transport coefficients#. Drastic
changes in the properties of a LL are caused by local im
rity potentials.

The conductanceGV of an infinite LL with an impurity
was calculated for the first time in Ref. 3, where it has be
shown thatGV scales with the temperature as a power-l
function with an exponent that depends strongly on the c
pling constant. It is natural to assume an analogous beha
for the thermal-electric coefficientGDT ~we will prove this
assumption later!. Thus, from purely dimensional conside
ations, one could expect5 a linear-T behavior of the
‘‘impurity-induced’’ thermopower SL

( i )(T,g) even for
strongly interacting systems. However, unlike the case
dispersion-induced thermopower, the dependence ofSL

( i ) on
the dimensionless parameterg cannot be obtained from suc
dimensional analysis.

In this section we evaluate analytically the current
duced by the temperature difference,JDT , and determine the
dependence of the thermopower of a LL on the interact
strength. Since it is well known that even a weak bare
tential strongly suppresses at low temperatures the trans
of a charge in a LL, it is reasonable to consider, from t
very beginning, the case of weak electron tunneling,
which the problem can be solved by a tunneling Hamilton
method.

We start with a general expression for the tunnel curr
in a system of interacting electrons~see, e.g., Ref. 10!:

J52peE
2`

1`

dp1E
2`

1`

dp2uT̂p1 ,p2
u2E

2`

`

d« AT1
~p1 ,«!

3AT2
~p2 ,«1eV!@ f T2

~«1eV!2 f T1
~«!#, ~22!

where f T(«)5@exp$«/T%11#21 is the Fermi-Dirac distribu-
tion function, AT(p,«) is the electron spectral density, an
5-4
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T̂p1 ,p2
is the bare tunneling amplitude. We assume~see, e.g.,

Ref. 19! that the tunnel probabilityuT̂u2 depends on the mo
mentum of only one of the two segments of the 1D wire~say,
for definiteness ‘‘1’’! and that it is a smooth function of th
momentum forp;pF . Under this assumption we may writ

uT̂p1 ,p2
u2⇒uT̂r 1 ,r 2

~q1!u2.d r 1 ,r 2
S tS

21
]tS

2

]EF
vFr 1q1D

1d r 1 ,2r 2
S tR

21
]tR

2

]EF
vFr 1q1D .

~23!

Herepm5r mpF1qm , m51,2, r m561, and the parameter
tS,R
2 [tS,R

2 (EF) will be specified later.
In the linear response approximation the tunnel curren

a sum of two currents,J5JV(T)1JDT(T): one induced by
the voltage dropV across the junction and the other induc
by temperature differenceDT between two segments of th
wire, i.e.,

JV52pe2V (
r 1 ,r 2

E
2`

`

dq1E
2`

`

dq2E
2`

`

d«uT̂r 1 ,r 2
~q1!u2

3AT~r 1 ,q1 ,«!AT~r 2 ,q2 ,«!
] f ~«!

]«
, ~24!

JDT52peDT (
r 1 ,r 2

E
2`

`

dq1E
2`

`

dq2E
2`

`

d«uT̂r 1 ,r 2
~q1!u2

3AT~r 1 ,q1 ,«!AT~r 2 ,q2 ,«!
] f ~«!

]T
, ~25!

where now the special functions are taken at a mean t
peratureT and the derivatives of the distribution function a
given as

] f ~«!

]«
52

1

4T

1

cosh2S «

2TD ,
] f ~«!

]T
5

«

4T2

1

cosh2S «

2TD .

~26!

To evaluate the kinetic coefficientsGV and GDT , one
needs to know the exact analytic expression for the spe
function AT(q,«) at a finite temperature. By definition,

ATm
~r m ,qm ,v!52

1

p
Im@Gr m

R ~q,v!#, ~27!

where Gr m

R (q,v) is the Fourier transform of the retarde

Green’s function:

Gr m

R ~x,t !52 iQH~ t !^$C r m
~x,t !,C r m

† %1&

5QH~ t !@Gr m

. ~x,t !2Gr m

, ~x,t !#. ~28!

HereQH(t) is the Heaviside step function and the stand
definitions forG. andG, ~see, e.g., Ref. 10, Sec. 3.7! are
07511
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adopted. To calculate these Green’s functions we will us
bosonization technique. The conventional procedure~see,
e.g., Ref. 2! is to represent the fermion field operatorC(x,t)
as an exponential of the boson fieldsF(x,t) andQ(x,t) with
the commutation relations@Q(x),F(x8)#52p i sgn(x2x8),
yielding

Cm,r m
~x,t !5

1

A2pa
Um,r m

† expH 2
i

2
@r mFm~x,t !

1Qm~x,t !#J . ~29!

Here a is a cutoff parameter (a;vF /EF) and Um,r m

† is a

unitary raising operator which increases the number of e
trons on the branchr m by one particle, but does not affect th
bosonic excitations. For our purpose its specific form is
relevant.

If we neglect tunneling we are dealing with two sem
infinite LL’s with an open boundary which reflects the ele
trons perfectly. It is helpful to formulate the correspondi
boundary condition in terms of mirror images; then20

CL,m(x)52CR,m(2x). The boson fields yielding this
boundary condition in the momentum representation take
form ~see Appendix B!

Qm~x!5 i E
2`

`

dpA 2s

gep
~bp2bp

†!cosS ep

s
xD ,

Fm~x!5E
2`

1`

dpA2sg

ep
~bp1bp

†!sinS ep

s
xD , ~30!

wherebp and bp
† are the standard bosonic annihilation a

creation operators (@bp ,bp8
†

#5dp,p8) andep5supu is the en-
ergy of the bosonic excitation with momentump.

With the help of Eqs.~29! and~30! it is straightforward to
evaluate the fermion Green’s functions. In particular,
iG. one gets in the vicinity of the contact (x;0) the fol-
lowing expression:

^Cm,r m
~x,t !Cm,r m

† &

.
1

2pa F 1

S 11 i
vFx

a D
pTmx

sinh~pTmx!G ~1/g1r m!/2

3F 1

S 11 i
vFh

a D
pTmh

sinh~pTmh!G ~1/g2r m!/2

, ~31!

wherex5t2x/s andh5t1x/s.
The next step is to calculate the Fourier transform of

Green’s functions. It is helpful now to introduce ne
variables X65pT(t6x/s) and V65(v6ks)/2 and the
dimensionless temperatureT̄5pTa/vF . In terms of these
variables the Fourier transform ofiG. has the form
5-5



the

ROMANOVSKY, KRIVE, BOGACHEK, AND LANDMAN PHYSICAL REVIEW B 65 075115
iGr m

. ~V1 ,V2!5
T̄1/g21

8p2gT
expS 2 i

p

2

1

gD E
2`

`

dX1E
2`

`

dX2

3expF i

pT
~V1X21V2X1!GF 1

X22 i T̄

X2

sinhX2
G ~1/g1r m!/2F 1

X12 i T̄

X1

sinhX1
G ~1/g2r m!/2

. ~32!

The spectral densityA(v,q) is expressed throughG.(v,q) by the standard relation

Ar m
~V1 ,V2!5

1

2p
Im@ iGr m

. ~V1 ,V2!1 iGr m

. ~2V1 ,2V2!#. ~33!

Since we are interested in the limitT̄!1, the integrals in Eq.~32! can be taken analytically. After some algebra we get
analytic expression for the spectral density function of a spinless LL with an open boundary, at finite temperaturesT!EF :

Ar m
~V1 ,V2!5

1

~2p!3gT
T̄1/g21 coshS V11V2

2T D E
2`

`

dX2 cosS V1X2

pT D S 1

coshX2
D ~1/g1r m!/2

3E
2`

`

dX1 cosS V2X1

pT D S 1

coshX1
D ~1/g2r m!/2

55 1

~2p!3gT
~2T̄!1/g21 coshS V11V2

2T D UGS 1

4 F1

g
1r mG1

i

2p
bV1D U2

GS 1

2 F1

g
1r mG D

UGS 1

4 F1

g
2r mG1

i

2p
bV2D U2

GS 1

2 F1

g
2r mG D , if g,1,

d~v2r mvFk! if g51.

~34!
uc

the
port
c-
of

in
lti-

ith
in-

an
-

hat

are
-
c-
.

Substituting Eq.~34! into Eqs.~24! and~25! and performing
the integration over the momenta and energy~see Appendix
C!, one gets the desired kinetic coefficients~here we restore
the normal dimensionality!

GV5
e2

2p\
t0
2Rg

~ j !~T!, GDT5
p2

3

e

\
kB

2T
]t0

2

]EF
Rg

~ j !~T!,

~35!

where the renormalization coefficientsRg
( j )(T) ( j 51,2) are

given by

Rg
~ j !~T!5

2 j 11

2
BS 2 j 11

2
,
1

gD S p
kBTa

\vF
D 2~1/g21!

. ~36!

Here B(x,y)5G(x)G(y)/G(x1y) is the beta function and
the effective transmission probabilityt0

2!1 at the Fermi en-
ergy is defined as

t0
25S 2p

\vF
D 2

(
r 1 ,r 2

~ tS
2d r 1 ,r 2

1tR
2d r 1 ,2r 2

!. ~37!

The expression for the conductance given in Eq.~35! coin-
cides with the known result.3,21 One can see from Eqs.~35!
and ~36! that the thermoelectric cross coefficientGDT is
renormalized by the interaction in analogy with the cond
07511
-

tance. Consequently, the influence of the interaction on
thermopower is far less dramatic than that on the trans
coefficients. The thermopower of a LL is still a linear fun
tion of temperature5,6 as is the thermopower of a system
noninteracting electrons. The electron-electron interaction
a LL model leads only to a temperature-independent mu
plicative renormalization of the thermopowerS0 of the free
electrons:

SL
~ i !~T,g!5

3g

21g
S0~T!. ~38!

For an infinite LL the renormalization factor decreases w
increase of the interelectron interaction, and for strongly
teracting particlesSL

( i )(g!1).(3/2)gS0 .

IV. CONCLUSION

In this paper we have evaluated the thermopower of
infinite spinless LL induced by~i! the dispersion of the elec
tron spectrum near the Fermi energy and by~ii ! the back-
scattering of the electrons by an impurity. We showed t
the thermopower treated by perturbation theory~with respect
to the nonlinearity of the electronic spectrum and the b
electron tunneling amplitude! is described by the Fermi
liquid formulas renormalized by interaction-dependent fa
tors. For aninfinite LL the renormalization coefficients, Eqs
5-6
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~21! and ~38!, are decaying functions of the interactio
strengthV0;e2, since the correlation parameter is equal
g215A11V0 /p\vF for spinless electrons.

To explore whether the electron-electron interactions s
presses the thermopower of 1D electron systems, we h
solved the problem for an infinite LL. In real experiments t
LL wire ~e.g., a carbon nanotube22! is connected to 3D or 2D
metallic leads where the electrons can be regarded as no
teracting particles. It is known that the transport properties
a LL wire connected to~noninteracting! electron reservoir
differ from the transport properties calculated for an infin
LL, even for adiabatic contacts. The best known example
such a behavior is the conductanceGL of an impurity-free
LL wire. For an infinite LL, formallyGL5gG0 ~G0 is the
conductance quantum,G05e2/h for spinless electrons!,
while for a LL wire connected to leads,GL5G0 @the so-
called ‘‘no renormalization theorem’’ for the conductance
a LL ~Refs. 23–26!#. Note that the heat conductanceGT is
also different for the above two situations~see Refs. 27 and
28!.

To estimate the thermopower of a finite LL wire adiaba
cally connected to leads of noninteracting electrons we
follow the approach proposed in Ref. 29. In the case of w
tunneling through the impurity, the voltage drop across
impurity and the one measured between the leads are d
ent quantities. This fact is evident in the limit of strong i
teraction g2;\vF /e2!1 when the Coulomb blockade i
pronounced; the shift of the chemical potentials of the le
DmL5eU cannot change significantly the voltage dropV
across the impurity~placed in the middle of a sufficiently
long LL wire!. In a previous study it has been shown th
V5g2U for arbitrary interaction strength.29 Therefore, to re-
late ~at least qualitatively! the thermopowerSL

( i )(T,g) evalu-
ated above to the thermopowerSW

( i )(T,g) of a LL wire adia-
batically connected to leads of noninteracting electrons,
have to replace first the voltageV in our formulas byg2U.
Since this substitution affects only the voltage induced c
rent, it influences the thermopowerSW

( i )(T,g).SL
( i )(T,g)/g2

and nowSW
( i )(T,g);S0(T)/g@S0(T) for strongly interacting

particles. We see that in a real situation, when the volt
drop is measured between the leads the electron-electro
teraction in the wire enhances the impurity-induced th
mopower. It supports our claim6 based on estimation of th
thermopower in a phenomenological model of charge
heat transport in a LL. An explicit calculation of the corr
lation functions in the presence of the leads remains a sub
for future studies.

Finally, we may inquire about the effect of the leads
the dispersion-induced thermopower. In the absence of e
tron backscattering the leads keep the conductance of a
wire unrenormalized,23–25 i.e., GL5e2/h. Therefore, the
dispersion-induced thermopower of a finite LL wir
SW

(d)(T,g)5gSL
(d)(T,g), is suppressed even stronger by t

interelectron interaction than the above calculated quan
SL

(d) . For strongly interacting (g!1) particles SW
(d)(T,g)

;g2SF(T)!SF(T) @SF is the corresponding Fermi-liquid
thermopower, Eq.~18!#. Thus one could expect that in ex
periments involving wires of strongly correlated electro
07511
-
ve

in-
f

f
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ll
k
e
r-

s
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e
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e
in-
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d

ct
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ty

the measured thermopower would be associated mostly
imperfections in the wire~impurities, barriers at the bound
aries between the 1D wire and the leads, etc.!.
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APPENDIX A

The density operatorsrN,J(t,x) in momentum representa
tion take the form~see, e.g., Ref. 2!

rN~x,t !5
N0

L
1

1

2p E
2`

1`

dpAgep

s
@bpe2 i ~px2ept !

1bp
†ei ~px2ept !#, ~A1!

rJ~x,t !5
J0

L
1

1

2p E
2`

1`

dpAep

sg
sgn~p!@bpe2 i ~px2ept !

1bp
†e~px2ept !#, ~A2!

whereL is the size of the system (L→`), N0 is the number
of extra ~above the Fermi level! electrons,J0 is the zero-
mode current,bp and bp

† are the standard bosonic annihil
tion and creation operators (@bp ,bp8

†
#5dp,p8), and ep

5supu is the energy of bosonic excitation with momentump.
By making use of Eqs.~A1! and~A2! it is straightforward

to calculate the Matsubara Green functions for the den
operators (L→`):

^T̂trN~2 i t,x!rN~0,y!&

>2
g

2ps2b (
n

ei v̄ntv̄n

coshF v̄n

s S x2y2
L

2D G
sinhF ṽn

s

L

2G ,

~A3!

^T̂trJ~2 i t,x!rJ~0,y!&

>2
1

2ps2gb (
n

ei v̄ntv̄n

coshF v̄n

s S x2y2
L

2D G
sinhF ṽn

s

L

2G ,

~A4!
5-7



re

u
ns

e

he

-
c
is

p-

on
a-

he
e

ROMANOVSKY, KRIVE, BOGACHEK, AND LANDMAN PHYSICAL REVIEW B 65 075115
^T̂trN~2 i t,x!rJ~0,y!&

>2
1

2ps2b (
n

ei v̄ntv̄n

sinhF v̄n

s S x2y2
L

2D G
sinhF v̄n

s

L

2G .

~A5!

HererN,J[rN,J(0,0) andv̄n5 i2pn/b is the Matsubara fre-
quency ~b5T21, n50,61,62,...!. One readily gets from
Eqs.~A3!–~A5!

^rNrN&5
g

psL(
m

«m

eb«m21
,

^rJrJ&5
1

psgL(
m

«m

eb«m21
, ^rJrN&50. ~A6!

In perturbation theory the kinetic coefficients can be rep
sented as the time-ordered product of therN andrJ density
operators. In particular, fors (2) in the static limitv→0 @see
Eq. ~13!#, one gets

s~2!5A
ep3s3g

6
lim

v̄→0
L→`

1

v̄ E
0

b

dlE
0

b

dt1E
0

L

dx1 exp~ ilv̄!

3@^T̂trJ~2 il,x!rN~2 il,x!rJ~0,x!

3rN~2 i t1 ,x1!rN~2 i t1 ,x1!rN~2 i t1 ,x1!&

13^T̂trJ~2 il,x!rN~2 il,x!rJ~0,x!

3rJ~2 i t1 ,x1!rJ~2 i t1 ,x1!rN~2 i t1 ,x1!&]. ~A7!

Wick’s theorem allows us to reduce the time-ordered prod
of operators to the sum of the product of Green’s functio
In our case the thermoelectric coefficient takes the form

s~2!5A
ep3s3g

2
lim

ṽ→0
L→`

1

v̄ E
0

b

dlE
0

b

dt1E
0

L

dx1 exp~ ilv̄!

3@^T̂rJ~2 il,x!rJ~0,x!&^T̂rN~2 il,x!

3rJ~2 i t1 ,x1!&#~^rJrJ&1^rNrN&!, ~A8!

wherev̄5 iv. Substitution of the Green’s functions into th
last equation yields

s~2!5
Ae

s2b2

p~g211!

6
. ~A9!

APPENDIX B

Here we derive following Ref. 20 the expressions for t
momentum representation of the bosonic fieldsF(x) and
Q(x) for a LL with an open boundary. The impurity poten
tial at x50 is modeled by the boundary which reflects ele
trons perfectly. Thus one may regard the LL wire as cons
07511
-

ct
.

-
t-

ing of two independent~in the absence of tunneling!
segments. Let us continue the fermion fieldC r m

(x) from the
segment ‘‘1~2!’’ to the segment ‘‘2~1!.’’ The fermion fieldC
must satisfy the condition

CL,m~x!52CR,m~2x! ~B1!

on each segmentm51,2. Hence the densitiesrN,J,L,R and
the field operators have to obey the relationsrL(x)
5rR(2x), rN(x)5rN(2x), rJ(x)52rJ(2x), Q(x)
5Q(2x), and F(x)52F(2x). It is natural to consider
that for the case of nonininteracting electrons (g51) the
fields Q andF are the stationary waves

Qm
~0!~x!5 i E

2`

1`

dpA2vF

ep
~bp2bp

†!cosS ep

vF
xD ,

Fm
~0!~x!5E

2`

1`

dpA2vF

ep
~bp1bp

†!sinS ep

vF
xD , ~B2!

wherebp and bp
† are bosonic annihilation and creation o

erators (@bp ,bp8
†

#5dp,p8) and ep5vFupu. Substituting Eq.
~B2! into the LL Hamiltonian, Eq.~4!, we observe that the
Hamiltonian is not diagonal in the annihilation and creati
operators. It is diagonalized by the Bogoliubov’s transform
tion, and the transformed fieldsQm(x) andFm(x) take the
form

Qm~x!5ÛQm
0 ~x!Û21

5 i E
2`

1`

dpA 2s

gep
~bp2bp

†!cosS ep

s
xD , ~B3!

Fm~x!5ÛFm
0 ~x!Û215E

2`

1`

dpA2sg

ep
~bp1bp

†!sinS ep

s
xD ,

~B4!

where the unitary operatorÛ is

Û5expS 1

2
wE

2`

1`

dq@bq
†b2q

† 2bqb2q# D . ~B5!

Here tanh(2w)5(12g2)/(11g2). The energyep in Eqs. ~B3!
and ~B4! is now the energy of plasmonsep5supu in a LL.

APPENDIX C

In this appendix we list the analytical expressions for t
integrals of theG functions appearing in the evaluation of th
LL thermopower:
5-8
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E
2`

`

dxuG~a1 ix !u2uG~b1 ix !u252p
G2~a1b!G~2a!G~2b!

G„2~a1b!…
, ~C1!

E
2`

`

dxH xUGS a1
i

2
~x1z! D U2UGS b1

i

2
~x2z! D U2J 5

2pz

~a1b!

G2~a1b1 iz!G~2a!G~2b!

G„2~a1b!…
, ~C2!

E
2`

`

dx$x2uG~a1 ix !u2uG~b1 ix !u2%5
2pab

~2a12b11!

G2~a1b!G~2a!G~2b!

G„2~a1b!…
. ~C3!

The first integral can be found in the tables of integrals~see, e.g., Ref. 30!. The two other integrals are readily derived fro
Eq. ~C1!.
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