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Energetics, forces, and quantized conductance in jellium-modeled metallic nanowires

Constantine Yannouleas, Eduard N. Bogachek, and Uzi Landman
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

~Received 6 October 1997!

Energetics and quantized conductance in jellium-modeled nanowires are investigated using the local-
density-functional-based shell correction method, extending our previous study of uniform-in-shape wires@C.
Yannouleas and U. Landman, J. Phys. Chem. B101, 5780 ~1997!# to wires containing a variable-shaped
constricted region. The energetics of the wire~sodium! as a function of the length of the volume-conserving,
adiabatically shaped constriction, or equivalently its minimum width, leads to the formation of self-selecting
magic wire configurations, i.e., a discrete configurational sequence of enhanced stability, originating from
quantization of the electronic spectrum, namely, formation of transverse subbands due to the reduced lateral
dimensions of the wire. These subbands are the analogs of shells in finite-size, zero-dimensional fermionic
systems, such as metal clusters, atomic nuclei, and3He clusters, where magic numbers are known to occur.
These variations in the energy result in oscillations in the force required to elongate the wire and are directly
correlated with the stepwise variations of the conductance of the nanowire in units of 2e2/h. The oscillatory
patterns in the energetics and forces, and the correlated stepwise variation in the conductance, are shown,
numerically and through a semiclassical analysis, to be dominated by the quantized spectrum of the transverse
states at the most narrow part of the constriction in the wire.@S0163-1829~98!01908-0#
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I. INTRODUCTION

Understanding the physical origins and systematics un
lying the variations of materials properties with size, form
aggregation, and dimensionality is one of the main ch
lenges in modern materials research, and it is of ever incr
ing importance in the face of the accelerated trend tow
miniaturization of electronic and mechanical devices.1–4

Interestingly, it has emerged that concepts and meth
ologies developed in the context of isolated gas-phase c
ters and atomic nuclei are often most useful for investi
tions of finite-size solid-state structures. In particular, it h
been shown most recently5,6 through first-principles
molecular-dynamics simulations that as metallic~sodium!
nanowires are stretched to just a few atoms in diameter,
reduced dimensions, increased surface-to-volume ratio,
impoverished atomic environment, lead to the formation
structures, made of the metal atoms in the neck, which
be described in terms of those observed in small gas-p
sodium clusters; hence they were termed5,6 supported
cluster-derived structures~CDS’s!. The above prediction o
the occurrence of ‘‘magic-number’’ CDS’s in nanowires, d
to characteristics of electronic cohesion and atomic bond
in such structures of reduced dimensions, is directly co
lated with the energetics of metal clusters, where mag
number sequences of cluster sizes, shapes, and structura
tifs due to electronic and/or geometric shell effects have b
long predicted and observed.7–9

These results lead one directly to conclude that ot
properties of nanowires, derived from their energetics, m
be described using methodologies developed previousl
the context of clusters. Indeed, in a previous work,10 we
showed that certain aspects of the mechanical response~i.e.,
elongation force! and electronic transport~e.g., quantized
conductance! in metallic nanowires can be analyzed usi
the local-density-approximation-~LDA- ! based shell correc
570163-1829/98/57~8!/4872~11!/$15.00
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tion method ~SCM!, developed and applied previously i
studies of metal clusters.8,11 Specifically, we showed that in a
jellium-modeled, volume-conserving, and uniform in sha
nanowire, variations of the total energy~particularly terms
associated with electronic subband corrections! upon elonga-
tion of the wire lead toself-selectionof a sequence of stabl
‘‘magic’’ wire configurations ~MWC’s, specified by a se-
quence of the wire’s radii!, with the force required to elon
gate the wire from one configuration to the next exhibiti
an oscillatory behavior. Moreover, we showed that due to
quantized nature of electronic states in such wires, the e
tronic conductance varies in a quantized stepwise manne~in
units of the conductance quantumg052e2/h), correlated
with the transitions between MWC’s and the abov
mentioned force oscillations.

In this paper, we expand our LDA-based treatment
wires of variable shape, which allows for a constricted
gion. From this investigation, we conclude that the abo
self-selection principles and the direct correlations betw
the oscillatory patterns in the energetic stability, forces, a
stepwise variations of the quantized conductance main
for the variable-shaped wire as well, with the finding th
underlying these oscillatory patterns and correlations are
contributions from the narrowest region of the wire. Furth
more, this finding is analyzed and corroborated throug
semiclassical analysis.

Prior to introducing the model studied in this paper, it
appropriate to briefly describe certain previous theoret
and experimental investigations, which form the backgrou
and motivation for this study. Atomistic descriptions, bas
on realistic interatomic interactions, and/or first-principl
modeling and simulations played an essential role in disc
ering the formation of nanowires,12 and in predicting and
elucidating the microscopic mechanisms underlying th
mechanical, spectral, electronic, and transport properties
4872 © 1998 The American Physical Society
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57 4873ENERGETICS, FORCES, AND QUANTIZED . . .
These predictions12–14 @particularly those pertaining to
generation of nanowires through separation of the con
between two material bodies, size-dependent evolution of
wire’s mechanical response to elongation transforming fr
multiple slips for wider wires to a succession of stress ac
mulation and fast relief stages leading to a sequence of s
tural instabilities and order-disorder transformations loc
ized in the neck region when its diameter shrinks to abou
Å, consequent oscillations of the elongation force and
calculated high value of the resolved yield stress (; 4 GPa
for Au nanowires, which is over an order of magnitude th
of the bulk!, as well as anticipated electronic quantizati
effects on transport properties12,15# have been corroborated i
a number of experiments using scanning tunneling and fo
microscopy,12,16–21 break junctions,22 and pin-plate
techniques13,23 at ambient environments, as well as und
ultrahigh vacuum and/or cryogenic conditions. Particula
pertinent to our current study are experimental observat
of the oscillatory behavior of the elongation forces and
correlations between the changes in the conductance an
force oscillations; see especially the simultaneous meas
ments of force and conductance in gold nanowires in R
20, where in addition the predicted ‘‘ideal’’ value of th
critical yield stress has also been measured~see also Ref.
21!.

The LDA-jellium-based model introduced in our previo
paper10 and extended to generalized wire shapes her
while providing an appropriate solution within the mode
assumptions~see Sec. II!, is devoid by construction o
atomic crystallographic structure and does not address is
pertaining to nanowire formation methods, atomistic co
figurations, and mechanical response modes@e.g., plastic de-
formation mechanisms, interplanar slip, ordering and dis
dering mechanisms~see detailed descriptions in Refs. 12, 1
and 14, and a discussion of conductance dips in Ref.!,
defects, mechanical reversibility,20,13 and roughening of the
wires’s morphology during elongation14#, nor does it con-
sider the effects of the above on the electron spectrum, tr
port properties, and dynamics.6 Nevertheless, as shown be
low, the model offers a useful framework for linkin
investigations of solid-state structures of reduced dimens
~e.g., nanowires! with methodologies developed in clust
physics, as well as highlighting certain nanowire phenom
of mesoscopic origins and their analogies to clusters.

In this context, we note that several other treatments
lated to certain of the issues in this paper, but employ
free-electron models, have been pursued most recently24,25

In both of these treatments an infinite confining potential
the surface of the wire is assumed and only the contribu
from the kinetic energy of the electrons to the total energ
considered, neglecting the exchange-correlation and Ha
terms, and electrostatic interactions due to the positive io
~jellium! background. A comprehensive discussion of t
limitations of such free-electron models in the context
calculations of electronic structure and energetics~e.g., sur-
face energies! of metal surfaces can be found in Ref. 26.

In Sec. II A, we outline the LDA-based shell correctio
method, describe the jellium model for variable-shap
nanowires, and derive expressions for the energetics of s
nanowires~density of states, energy, and force!. Numerical
results pertaining to energetics, force, and electronic cond
ct
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tance, calculated as a function of elongation for variab
shaped sodium nanowires, are given in Sec. II B, includin
discussion on the main finding that the contribution from t
narrowest part of the constriction underlies the properties
these quantities and the correlations between them. Th
correlations between the energetic and transport prope
and their dependence on the narrowest part of the nano
are further analyzed in Sec. III, using a semiclassical tre
ment. We summarize our results in Sec. IV.

II. DENSITY-FUNCTIONAL DESCRIPTION
OF JELLIUM NANOWIRE

A. Theory

1. Shape of constriction

Consider a jellium nanowire with circular symmetr
about the axis of the wire (z axis!. The wire may contain a
constricted region~see Fig. 1!, that is, a section of lengthL
where the cross-sectional radiusa(z) varies along the axis a

a~z!5a01~R02a0! f ~z!, 2L/2<z<L/2, ~1!

with f (2z)5 f (z) ~thez50 plane passes through the midd
of the wire! and f (6L/2)51. R05a(6L/2) is the uniform
radius outside the constricted section, anda0[a(0). In this
paper, we take a parabolic shapef (z)5(2z/L)2 for the de-
scription of the constricted region@a wire of uniform cross
section throughout corresponds tof (z)51#.

We also assume that elongation of the wire occurs in
constricted region while maintaining its volume consta
~this is supported by MD simulations12!, namely, by requir-
ing that

2E
0

L/2

a2~z!dz5R0
2L0 ~2!

for given values ofR0 andL0 @hereafter we will denote the
pair of parameters (R0,L0) by O; we further assume tha
R0!L0#. For the parabolic shape assumed in this paper,
smallest cross-sectional radius is determined for any gi
value ofL0<L<5L0 from Eqs.~1! and ~2! as

a05
R0

4 F211S 30
L0

L
25D 1/2G , ~3!

i.e.,a05R0 for L5L0, anda050 ~i.e., breakage of the wire!
for L55L0.

FIG. 1. Schematic drawing of the jellium background of
variable-shaped nanowire. The~cylindrical! symmetry axis of the
wire is along thez axis, with a constricted region (2L/2<z
<L/2) described by a dependence of the cross-sectional radiia(z)
on z @see Eq.~1!#. R05a(z56L/2) is the radius in the uniform
part of the wire outside the constriction.
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2. Shell correction method

The shell correction method we employ is based on
LDA theory. In the shell correction method8,11,27,28~SCM!,
the total LDA energy,ET(L,O), for any configuration of the
wire ~specified byL andO) is separated as

ET~L,O!5Ẽ~L,O!1DEsh~L,O!, ~4!

whereẼ(L,O) varies smoothly as a function of the syste
size (L) while DEsh(L,O) varies in an oscillatory manne
with L, as a result of the quantization of the electronic sta
DEsh(L,O) is usually called a shell correction in th
nuclear29,30 and cluster8,11 literature; we continue to use her
the same terminology with the understanding that the e
tronic levels in the nanowire form subbands, which are
analog of electronic shells in clusters where the size of
system is usually given by specifying the number of ato
N. The SCM method, which has been shown to yield res
in excellent agreement with experiments8,27,28 and self-
consistent LDA calculations8,11 for a number of cluster sys
tems, is equivalent to a Harris functional (EHarris) approxi-
mation to the Kohn-Sham LDA with the input density,r in,
obtained through variational minimization of an extend
Thomas-Fermi~ETF! energy functional,EETF@r#.

The Harris functional is given by the following expre
sion:

EHarris@r in#5EI1(
i 51

occ

e i
out2E H 1

2
VH@r in~r !#

1Vxc@r in~r !#J r in~r !dr1E Exc@r in~r !#dr ,

~5!
y
r
r

u-

de

tio
e

s.

c-
e
e
s
ts

whereVH is the Hartree~electronic! repulsive potential,EI is
the repulsive electrostatic energy of the ions, andExc
[*Exc@r#dr is the exchange-correlation~xc! functional31

„the corresponding xc potential is given asVxc(r )
[dExc@r#/dr(r )…. e i

out are the eigenvalues~non-self-
consistent! of the single-particle Hamiltonian,

Ĥ52
\2

2me
¹21Vin , ~6!

with the mean-field potential given by

Vin@r in~r !#5VH@r in~r !#1Vxc@r in~r !#1VI~r !, ~7!

VI(r ) being the attractive potential between the electrons
ions.

In electronic structure calculations where the corpuscu
nature of the ions is included~i.e., all-electron or pseudopo
tential calculations!, r in may be taken as a superposition
atomic-site densities. In the case of jellium calculations,
have shown8,11 that an accurate approximation to the K
LDA total energy is obtained by using the Harris function
with the input densityr in in Eq. ~5! evaluated from a varia-
tional extended-Thomas-Fermi~ETF!-LDA calculation.

The ETF-LDA energy functionalEETF@r# is obtained by
replacing the kinetic energy termT@r# in the usual LDA
functional, namely, in the expression

ELDA@r#5T@r#1E H 1

2
VH@r~r !#1VI~r !J r~r !dr

1E Exc@r~r !#dr1EI , ~8!

by the ETF kinetic energy, given to the fourth-order gra
ents as follows:32
2me

\2
TETF@r#5

2me

\2 E tETF@r#dr5E H 3

5
~3p2!2/3r5/31

1

36

~¹r!2

r
1

1

270
~3p2!22/3r1/3

3F1

3S ¹r

r D 4

2
9

8S ¹r

r D 2Dr

r
1S Dr

r D 2G J dr . ~9!
en
-
ive

ari-
The optimal ETF-LDA total energy is then obtained b
minimization ofEETF@r# with respect to the density. In ou
calculations, we use for the trial densities parametrized p
files r(r ;$g i%) with $g i% as variational parameters~the ETF-
LDA optimal density is denoted asr̃ ). The single-particle
eigenvalues$e i

out% in Eq. ~5! are obtained then as the sol
tions to the single-particle Hamiltonian of Eq.~6! with Vin
replaced byVETF @given by Eq.~7! with r in(r ) replaced by
r̃ (r )#. Hereafter, these single-particle eigenvalues will be
noted by$ ẽ i%.

In our approach, the smooth contribution in the separa
~4! of the total energy is given byEETF@ r̃ #, while the shell
correctionDEsh is simply the difference

DEsh5EHarris@ r̃ #2EETF@ r̃ #
o-

-

n

5(
i 51

occ

ẽ i2E r̃ ~r !VETF~r !dr2TETF@ r̃ #. ~10!

3. Adiabatic assumption

The volume density of the positive background is giv
by rv

153/(4pr s
3), wherer s is the Wigner-Seitz radius char

acteristic to the material, and thus the number of posit
charges in the constriction is

N1~O!53R0
2L0 /~4r s

3!. ~11!

Since the nanowire contains a constricted region of v
able cross-sectional radiusa(z) @see Eq.~1!#, we define a
linear ~i.e., density per unit length of the nanowire! back-
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57 4875ENERGETICS, FORCES, AND QUANTIZED . . .
ground densityr l
1(z;L,O)53a2(z)/(4r s

3), which when in-
tegrated over the total length of the wire yieldsN1(O) @see
Eq. ~11!#. Correspondingly, the variational electronic volum
density r̃ (x;L,O)[ r̃ (r ,z;L,O), and in our calculations it
takes the form

r̃ ~r ,z;L,O!5
r̃ 0~z!

†11exp$@r 2r 0~z!#/a~z!%‡g~z!
, ~12!

with r̃ 0(z), a(z), and g(z) as z-dependent variational pa
rameters. In the ETF calculation,r̃ is determined variation-
ally at a givenz as the one associated with a uniform cyli
der of radius a(z) ~adiabatic assumption!, under the
normalization condition for local charge neutrality, name
2p*dr@r r̃ (r ,z;L,O)#5r l

1(z;L,O) @which fixes the fourth

parameterr 0(z) in Eq. ~12!#. The optimizedr̃ allows then
calculation of the smooth contribution for any length of t
constriction,Ẽ(L,O)[EETF(L,O) in Eq. ~4!.

The calculation of the shell-correction term,DEsh(L,O),
in Eq. ~4! proceeds by evaluating first the density of states
the nanowire. Assuming an adiabatic separation of
‘‘fast’’ transverse and the ‘‘slow’’ longitudinal
variables,15,33,34 the electronic wave functions in the class
cally allowed regions may be written as

Cnme~r ,f,z;L,O!}cnm~r ;z,L,O!eimfei *zdz8k'
nm

~z8;e,L,O!,
~13!

where k'
nm is the local wave number along the axial (z)

direction of the nanowire

k'
nm~z,e;L,O!5F2me

\2
@e2 ẽ nm~z;L,O!#G 1/2

, ~14!

and ẽ nm is the ~transverse! local eigenvalue spectrum atz.
To calculate this spectrum for a wire of a configurati
specified by (L,O) for any value ofz, the eigenvalues of a
cylindrical wire with a~uniform! radiusa(z) are calculated
from the two-dimensional Schro¨dinger equation

2
\2

2me
Fd2

dr2
1

1

r

d

dr
2

m2

r 2 Gc1VETF~r ;z,L,O!c

5 ẽ nm~z,L,O!c. ~15!

The linear~per unit length!, one-dimensional density o
states atz, Dl(z,e;L,O), is given by
,

n
e

Dl~z,e;L,O!5
2

p(
nm

]k'
nm~z,e;L,O!

]e
Q@e2 ẽ nm~z;L,O!#,

~16!

where spin degeneracy has been included, andQ is the
Heaviside step function.

From Eq.~14!, we obtain

Dl~z,e;L,O!5S 2me

p2\2D 1/2

(
nm

@e2 ẽ nm~z;L,O!#21/2

3Q@e2 ẽ nm~z;L,O!#. ~17!

We may now define an integrated density of states in
constriction

D~e;L,O!5E
2L/2

L/2

dz Dl~z,e;L,O!. ~18!

The total number of states up to energye in the con-
stricted region of the wire is given by

N2~e;L,O!5E
0

e

de8D~e8;L,O!

5
2

pE2L/2

L/2

dz(
nm
A2me

\2
@e2 ẽ nm~z;L,O!#

3Q@e2 ẽ nm~z;L,O!#. ~19!

Since the total number of electrons in the constricted
gion is N1(O) @see Eq.~11!#, the Fermi energy,eF(L,O),
for a wire with a configuration specified by (L,O) is given
from Eq. ~19!, i.e.,

N2~eF ;L,O!5N1~O!. ~20!

Using the above and Eq.~10!, the shell-correction term,

DEsh~L,O![EHarris@ r̃ ;L,O#2EETF@ r̃ ;L,O#, ~21!

may be calculated as
DEsh~L,O!5E
0

eF~L,O!

de@eD~e;L,O!#22pE
2L/2

L/2

dzE
0

`

dr r r̃ ~r ,z;L,O!VETF~r ,z;L,O!

22pE
2L/2

L/2

dzE
0

`

dr rt ETF@ r̃ ~r ,z;L,O!#, ~22!

whereVETF is the ETF potential~Hartree, exchange-correlation, and electron attraction to the positive background! andtETF is
the volume density of the ETF kinetic-energy functional@see Eq.~9!#.

In actual calculations, we invert the order of integration in the first term of Eq.~22!, which then takes the form
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2

3pE2L/2

L/2

dz(
nm

@eF12 ẽ nm~z;L,O!#A2me

\2
@eF2 ẽ nm~z;L,O!#Q@eF2 ẽ nm~z;L,O!#. ~23!
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Note that Eq.~20! implies a common Fermi level for th
whole constriction for a givenL ~i.e., eF is not a local prop-
erty!. Therefore, Eq.~23! is not equivalent to integration o
the corresponding uniform wire result derived by us in R
10 over thez coordinate, since thereeF varies with the
wire’s cross-sectional radius.

Having calculated the smooth and shell-correction con
butions to the total energy, as a function ofL, the total elon-
gation force may be evaluated as the derivative of the t
energy with respect toL, i.e., FT52dET /dL, and the con-
tributions to it from the smooth and shell-correction term
are given byF̃52dẼ/dL, andDFsh52dDEsh/dL.

B. Results

In this section, we report results for the elongation o
sodium nanowire (r s54 a.u.!, starting with an initial cylin-
drical constriction of lengthL0580 a.u. and radiusR0525
a.u.

In Fig. 2, we show electronic-potential profile
VETF@r ;a(z),L,O#, for a particular constriction withDL/L0
51.125 (DL5L2L0). We display here the potential profile
calculated at the narrowest part of the constriction@a0
[a(0)512.62 a.u.# and at its end@i.e., ata(L/2)5R0# ~in
this paper, all the subsequent numerical results we will d

FIG. 2. Potential profiles at the narrowest (z50; left curve! and
end points (z56L/2; right curve! of a constriction with an elonga
tion DL/L051.125 ~whoseO parameters areL0580 a.u. andR0

525 a.u.!. The local transverse-mode spectra,ẽ nm , associated with
these two profiles are also displayed along the left and righty axes.
The dashed line indicates the Fermi level. For the (z50) profile,
the spectrum is labeled with the correspondingn,m local transverse
eigenvalues (n denotes the number of radial nodes plus one, anm
denotes the azimuthal angular-momentum quantum number!. The
same spectrum is numbered sequentially~in parentheses! to facili-
tate comparison between the location of the energy levels and
numbered peaks in the density of states given in the lower curv
Fig. 3~a!. Energies in units of eV, and lengths in a.u.
.

i-

al

-

cuss relate to constrictions with the same set ofO param-
eters, namely,L0580 a.u. andR0525 a.u.!. We found that
for other values ofz ~i.e., for 0,uzu,L/2), the potential
assumes profiles intermediate between the two profi
shown here, namely, the depth of the potential well rema
practically unaltered, while its width follows the enlargeme
of the jellium-background radiusa(z), from a0 to a(L/2).
From the three components,VH , VI , andVxc , which con-
tribute to the totalVETF @see Eq.~7!#, we found that for all
these potential profiles, calculated for different values oz
along the constriction, the xc contribution is the domina
one, amounting to approximately25.4 eV, while the total
electrostatic contribution,VH1VI , is much smaller, result-
ing in a characteristic ‘‘winebottle’’ profile familiar from
LDA studies of spherical clusters.35

Figure 2 also displays the transverse local eigenval
ẽ nm associated with the two potential profiles. Naturally,
wider potential profile yields a larger number of such eige
values below the Fermi level.

To illustrate the nature of the electronic spectrum in t
nanowires, and its dependencies on the characteristics o
wire, i.e., shape and length, we show in Fig. 3~a! densities of
states,D(e;L,O), calculated for a variable-shaped wire fo
two wire lengths ~and consequently two minimal cross
sectional radii of the constricted region!. The density of
states for a uniform wire with a radius equal to that of t
unconstricted region of the variable-shaped ones@shown in
Fig. 3~a!# is displayed in Fig. 3~b!.

Two ‘‘classes’’ of features are noted for the variabl
shaped wires:~i! those associated with the narrowest co
stricted region~marked by numbers! whose radiusa0 varies
upon elongation, and~ii ! those associated with the maxim
radius of the constriction~and with the unconstricted part o
the wire!, which remains constant throughout the elongat
of the wire. Identification of the latter class of features~sev-
eral of which are marked by arrows! is facilitated through
comparison with the density of states for the correspond
uniform wire @Fig. 3~b!#. We observe here that, for th
broader~and thus shorter! wire @lower curve in Fig. 3~a!#, six
of the features~peaks! in the density of states coming from
the spectrum of transverse energy levels at the narrow
region of the constriction are located below the Fermi le
eF @all the peaks in the density of states occur at the ener
of the transverse levels; e.g., compare the location of
peaks in the lower curve in Fig. 3~a! with the corresponding
spectrum on the left side of Fig. 2#.

On the other hand, for the much narrower~and thus
longer! constricted wire, only one of these peaks is beloweF
@see upper curve in Fig. 3~a!#. When plotting the density of
states ateF versus the elongation~or equivalently the mini-
mal radius of the constricted region!, these variations lead to
an oscillatory pattern, as peaks in the density of states
shifted above the Fermi level, one after the other as the w
is being elongated. These variations are also portrayed in
energetics of the wire~shown in Fig. 4!, and in the stepwise
behavior of the quantized conductance through the wire v
sus length~see Fig. 5 below!.
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From Fig. 4, we observe that the magnitude of the smo
ETF contributionẼ to the total energyET of the wire is
dominant, with the shell-correction contribution,DEsh, ex-
hibiting an oscillatory pattern, with local minima at a set
wire lengths~and correspondingly a set of minimal cros
sectional radii!, which we term ‘‘magic wire configurations’
~MWC’s!, i.e., wire configurations with enhanced energe
stability. When added to the smooth contribution, the
shell-correction features lead to local minima of the to
energy toward the end of the elongation~and consequently
narrowing! process, while for thicker wires~i.e.,DL/L0<2.5
in Fig. 4! they are expressed as inflection points of the to
energy~in this context, see the total-force curveFT in Fig. 5,
where the local minimum inET corresponds to the point with
FT50 marked by an arrow!.

We note here that the occurrence of local minima in
total energy results from a balance betweenDEsh and Ẽ,
with the latter increasing~that is acquiring less negative va
ues! as the constriction elongates due to the increasing c
tribution from the surface of the constriction. Comparison
the magnitudes of the shell corrections in a variable-sha

FIG. 3. Densities of states for~a! two configurations of the
variable-shaped wire, one~lower curve! with elongationDL/L0

51.125 and narrowest radiusa0512.62 a.u.~potential profiles and
local transverse spectra for this case are displayed in Fig. 2!, and the
other with elongationDL/L052.75 and narrowest radiusa054.57
a.u. ~upper curve whosey axis is shown on the right!. ~b! a
uniform-in-shape wire withDL/L050 anda05R0525 a.u. For all
cases,L0580 a.u. andR0525 a.u. The vertical dashed lines deno
the corresponding Fermi levels. The Fermi level of the const
tions, which for the uniform-in-shape wire is22.82 eV, varies only
by 0.05 eV for all the elongations down to the breakage point. In~a!
the numbered peaks correspond to the locations of the transv
energy levels in the narrowest part of the constriction@e.g., compare
the lower curve in~a! with the spectrum shown on the left axis o
Fig. 2#. The arrows indicate the locations of some of the transve
energy levels at the end points of the constriction, coinciding w
corresponding peaks in the spectrum of the uniform-in-shape
shown in~b!.
th

e
l

l

e

n-
f
ed

wire and in a uniform one@i.e., one withf (z)[1 in Eq. ~1!,
whose case was discussed in Ref. 10# shows that the ampli-
tudes of the oscillations in the latter case are much lar
~over an order of magnitude!. The reason for this difference
is that in the constant-radius wire the quantization into
transverse subbands is uniform along the wire, while in
variable-shaped case the subband spectrum is differen
various parts of the constriction. While the oscillatory patte
is dominated by the spectrum at the narrowest region~see
also Sec. III below!, the amplitudes are influenced by th
transverse-mode spectra from other parts of the constrict
Consequently, the number of local minima in the total e
ergy ET ~and thus the number of wire configurations, i.
lengths, for which the total forceFT vanishes! is larger for a
uniform wire than for a variable-shaped one. Additional
we suggest that for materials with relatively smaller surfa
energies a larger number of local minima may occur.

From the total energy, and the smooth and sh
correction contributions to it, we obtain the total ‘‘elongatio
force’’ ~EF! FT and the corresponding components of it,F̃
andDFsh. These results are displayed in Fig. 5, along w
the conductance of the wire evaluated, in the adiabatic
proximation~i.e., no mode mixing33! and neglecting tunnel-
ing effects ~assuming unit transmission coefficients for a
the conducting modes!, using the Landauer expression36,37

G~L,O!5g0(
nm

Q@eF2 ẽ nm~z50;L,O!#, ~24!

whereg052e2/h, and the spectrum of the transverse mod
is evaluated~for each constriction length! at the narrowest
part of the constriction,z50. Tunneling contributions~see,

-

rse

e
h
re

FIG. 4. Energies~in eV units! of a variable-shaped sodium
nanowire, plotted vs the relative elongationDL/L0. The initial pa-
rametersO areL0580 a.u. andR0525 a.u. The smooth, ETF con

tribution (Ẽ), the shell correction (DEsh), and the total energy (ET)
are displayed in~a!, ~b!, and~c!, respectively.
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e.g., Ref. 38!, mode-mixing, and nonadiabaticity may affe
the sharpness of the conductance steps, and/or intro
some interference-related features, particularly near the t
sitions between the conductance plateaus. These eff
which can be included in more elaborate evaluations of
conductance,39–41 do not modify the conclusions of ou
study.

Also included in this figure is a plot describing the vari
tion of the minimal cross-sectional radiusa0 with the length
of the constriction@see Eq.~3!#.

As evident from Fig. 5, the oscillations in the force resu
ing from the shell-correction contributions are prominent.
DFsh, we observe that the locations of the zeroes of
force situated at the right of the force maxima occur
values ofDL/L0 which coincide with the locations of loca
minima in the shell-correction contribution to the energy
the wire~i.e, for a sequence of minimal cross-sectional ra
corresponding to MWC’s!. In the total forceFT only one of
these points~where FT50) remains@i.e., the one corre-
sponding to the local minimum in the total energy towar
the end of the elongation process~see Fig. 4!#, for the rea-
sons discussed above in connection with the energetics o
wire. Nevertheless, the oscillations in the total force corre
well with those in the total energy of the wire, which a
discussed above originate from the subband spectrum a
narrowest part of the constriction~see also Sec. III!. Also,
the locations of the local maxima in the total force correl
with the stepwise variations in the conductance signify

FIG. 5. ~a!–~c! The smooth, ETF contribution to the force (F̃),
shell-correction force (DFsh), and total force (FT), corresponding
to the energies shown in Figs. 4~a!–4~c!, plotted vs the relative
elongationDL/L0. The arrow in~c! indicates the pointFT50 cor-
responding to the local minimum in the total energy shown in F
4~c!. The dashed lines indicate the zeroes of they axes. Forces in
units of nanonewtons.~d! The conductanceG for the variable-
shaped wire in units ofg052e2/h, plotted vsDL/L0, evaluated as
described by Eq.~24!. ~e! The variation of the cross-sectional radiu
~in a.u.! of the narrowest part of the constriction, plotted vsDL/L0

@see Eq.~3!, with L0580 a.u. andR0525 a.u.#.
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the sequential decrease in the number of transverse subb
~calculated at the narrowest section of the wire! below eF
~i.e., conducting channels! as the constricted part of the wir
elongates~and thus narrows!. Additionally, we note that the
magnitude of the total force is comparable to measured o
~i.e., in the nanonewton range!. The magnitude of the tota
force in sodium nanowires~not measured to date! is expected
to be smaller than that found for gold nanowires,20,21 due
mainly to differences in the electron densities and surf
energies of the materials.

III. SEMICLASSICAL ANALYSIS

As discussed above, the total energy of the wire is ch
acterized by local minima and inflection points occurring f
a set of wire lengths, or equivalently a set of minimal cro
sectional radii of the constriction, and are reflected in
oscillatory patterns of the elongation force. These featu
correspond to the oscillatory shell-correction contributio
and originate from the spectrum of transverse modes at
narrowest part of the constriction. Moreover, these patte
correlate with the locations of the quantized conducta
steps, which are determined by the transverse-mode s
trum at the narrowest region~i.e., the number of conducting
modes beloweF , and their degeneracies!.

To further investigate the origins of these correlations,
present in this section a semiclassical analysis of the den
of states, energetics, forces, and conductance in a f
electron nanowire modeled via an infinite confining poten
on the surface of the wire. As in the above~see Fig. 1!, we
model the constricted region of the wire as a section wit
slowly ~adiabatically! varying shape. Dividing the constric
tion into thin cylindrical slices, the solution of the Schro¨-
dinger equation for each slice is of the form

c5AJm~kr !eimfeip'z, ~25!

whereA is a normalization constant,p' is the electron mo-
mentum along the axis of the wire,Jm(kr ) is the Bessel
function of orderm, andk5(2mee2p'

2 )1/2/\.
Consider first a uniform cylindrical wire with a consta

cross-sectional radiusa. With the infinite wall boundary con-
dition assumed here, the single-particle electronic ene
levels in the wire are expressed in terms of the roots of
Bessel functions,gnm , as

enm,p'
5

\2gnm
2

2mea
2

1
p'

2

2me
. ~26!

Here we remark that in the semiclassical approximat
the electron performs a complicated trajectory inside
wire. All the semiclassical trajectories are tangent to
caustic surfaces of a set of concentric cylinders inside
wire.42 Quantization of the electronic states leads to selec
of only a certain subset of trajectories associated with a
tain set of radiir m of the caustic surfaces, corresponding
allowed values of the azimuthal quantum numbers,m, i.e.,
kr m5m; this description is closely related to the semiclas
cal periodic orbit theory.43 In the course of developing sem
classical methods, Keller and Rubinow42 have demonstrated

.
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that the Debye asymptotic expansion44 of the Bessel func-
tions (1!m,kr ) provides an accurate approximation to t
eigenfunctionJm(kr ), i.e.,

Jm~r !;S 2

p D 1/2

~k2r 22m2!21/4sinF ~k2r 22m2!1/2

2marccosS m

kr D1
p

4 G . ~27!

This approximation is valid in the region between the cau
cylindrical surface and the boundary surface of the wire
the region inside the caustic surface (m.kr ) the solution
decays exponentially. In this approximation, the equation
the asymptotic values of the Bessel-function zeroes has
form

~gnm
2 2m2!1/22marccosS m

gnm
D5pS n2

1

4D . ~28!

First we calculate the density of states whose evalua
involves, after integration overp' , double sums over the
quantum numbersn andm; n51,2, . . . ,m50,61,62, . . .
@see Eq.~17!#. Applying sequentially the Poisson summatio
formula to both sums and separating the oscillatory te
~note that in our semiclassical approximationka@1) in
complete analogy with Refs. 45 and 46, we obtain for
density of states~per unit length!,

Dl
osc~e!5

2

paea
(

M52

`

(
Q51

M /2
1

M
sinS pQ

M D
3cosF2MKasinS pQ

M D1
pM

2 G
1

2A2

paea
3/4e1/4 (M51

`
1

M1/2
sinF2pMKa1

p

4 G ,
~29!
c
n

r
he

n

s

e

whereea5\2/(2mea
2), andK is the electron wave vector

The two terms in Eq.~29! correspond to the contribution
from the point where the phase is stationary and from the
points in the sum~integral! over m ~see discussion in Ref
46!. While the second oscillatory term in Eq.~29! has a
smaller amplitude than the first one@by a factor of (Ka)1/2#,
it corresponds to an important class of electronic states, w
m'Ka, localized near the surface of the wire~the so-called
whispering gallery states46!.

Until now we discussed a uniform wire with a consta
cross-sectional radius. In a wire with a variable shape,
cross-sectional radii depend onz, as discussed in connectio
with Eq. ~1!. Substituting thez dependence of the radii in Eq
~29!, i.e., replacinga by a(z), we need to perform an inte
gration overz @see Eq.~18!#. This integration involves evalu
ation of integrals of the form

I 5ReE
2L/2

L/2

g~z!eiaKa~z!dz, ~30!

where for the first term in Eq.~29! g(z)5a(z) and a
52Msin(pQ/M), and for the second oneg(z)5Aa(z) and
a52pM . The fast oscillatory character of the exponent
factor @i.e., Ka(z)@1 for all z# relative to the slow variation
of g(z) allows us to use the standard stationary ph
method,47 obtaining

I'F 2p

aKa9~0!G
1/2

g~0!Re$exp@ iaKa~0!1 ip/4#%

1
2

aKa8~L/2!
g~L/2!Re$2 iexp@ iaKa~L/2!#%,

~31!

wherez50 is the stationary~extremum! point, the second
term is the contribution from the end-points of the integr
and primes denote differentiation with respect toz. Using the
above, and after simple algebraic manipulations, we ob
for the oscillatory part of the density of states,
s

classical
Dosc~e!5
2

p (
M52

`

(
Q51

M /2 H 1

M3/2FsinS pQ

M D G1/2F p

Ka9~0!G
1/22mea~0!

\2
cosF2MKa~0!sinS pQ

M D1
p

2 S M1
1

2D G
1

1

M2

2mea~L/2!

\2Ka8~L/2!
sinF2MKa~L/2!sinS pQ

M D1
pM

2 G J 1
2A2

pe1/4 (M51

` H 1

M F 1

Ka9~0!G
1/2 1

a~0!

3S 2mea
2~0!

\2 D 3/4

cos@2pMKa~0!#2
1

pM3/2

1

Ka8~L/2!a~L/2!
S 2mea

2~L/2!

\2 D 3/4

cosF2pMKa~L/2!1
p

4 G J .

~32!

The density of states of the wire contains oscillatory contributions from the narrowest cross section of the wire@first and third
terms in Eq.~32!# and from the wire’s-end cross sections~second and fourth terms!. The amplitudes of the latter oscillation
are smaller.

Having obtained the expression for the oscillatory part of the density of states, we can calculate now the semi
approximation to the grand-canonical thermodynamic potentialV @see the Appendix; at zero temperature,V5*(e
2eF)D(e)de#. Restricting ourselves for brevity to the largest contribution@that is, to the first term in Eq.~32! corresponding
to the main contribution from the narrowest part of the wire#, we get for the oscillatory part ofV,
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Vosc'
2eF

ApkFa9~0!a~0!
(

M52

`

(
Q51

M /2
1

M7/2
sin23/2~pQ/M !cosF2MkFa~0!sin~pQ/M !1

p

2 S M1
1

2D G . ~33!

From this expression, the oscillating part of the force as a function of the length of the constricted region@i.e., a(0) in
general depends onL, see e.g., Eq.~3!# is given by

Fosc~L !52
]Vosc

]a~0!

]a~0!

]L
, ~34!

which upon substitution of Eq.~33! yields

Fosc~L !'
4eFkF

1/2@]a~0!/]L#

Apa9~0!a~0!
(

M52

`

(
Q51

M /2
1

M5/2
sin21/2~pQ/M !cosF2MkFa~0!sin~pQ/M !1

p

2 S M2
1

2D G . ~35!

The expression for the conductance of the wire following the Landauer formula involves evaluation of the num
transverse states in the narrowest part of the wire. Following Ref. 48,

G'S 2e2

h D @kFa~0!#2

4 H 12
2

kFa~0!
1

8

Ap

1

@kFa~0!#3/2 (M52

`

(
Q51

M /2
1

M3/2
sin1/2~pQ/M !

3cosF2MkFa~0!sin~pQ/M !1
p

2 S M2
1

2D G J , ~36!
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which can be expressed as a function of the length of
constriction@see e.g., Eq.~3!; we remark here that our sem
classical treatment is valid for any adiabatic wire shape#.

The nonoscillating contribution~coming from the first
two terms in curly brackets! describes the Sharvin49 conduc-
tance of the constriction and the Weyl50 semiclassical correc
tions, and the third term describes conductance quantum
cillations as a function ofa(0). From a comparison of the
expression for the oscillatory contribution to the force@Eq.
~35!# with the oscillatory contribution to the conductan
@Eq. ~36!#, the direct correlation between the two is immed
ately evident, and both depend on the spectrum of transv
modes~conducting channels! at the narrowest part of th
wire. This is in agreement with the results shown in Fig
obtained through the LDA-SCM method.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we extended our investigations10 of energet-
ics, conductance, and mesoscopic forces in a jellium m
eled nanowire~sodium! using the local-density-functional
based shell correction method to variable-shaped wires,
containing a constricted region modeled here by a parab
dependence of the cross-sectional radii in the constriction
z ~see Fig. 1!. The results shown above, particularly the o
cillations in the total energy of the wire as a function of t
length of the variable-shaped constricted region~and corre-
spondingly its narrowest width!, the consequent oscillation
in the elongation force, the corresponding discrete seque
of magic wire configurations, and the direct correlation b
tween these oscillations and the stepwise quantized con
tance of the nanowires, originate from quantization of
electronic states~i.e., formation of subbands! due to the re-
duced lateral~transverse! dimension of the nanowires. Thes
results are in correspondence with our earlier LDA-SCM
e

s-

se

d-

e.,
lic
n

-

ce
-
c-

e

-

vestigation of jellium-modeled uniform nanowires.10 More-
over, in the current study of a wire with a variable~adiabatic!
shaped constriction, we found that the oscillatory behavio
the energetic and transport properties is governed by the
band quantization spectrum~termed here electronic shells! at
the narrowest part of the constriction. This characteristic
supported and corroborated by our semiclassical anal
~Sec. III!.

We reiterate here that such oscillatory behavior, as wel
the appearance of ‘‘magic numbers’’ and ‘‘magic configur
tions’’ of enhanced stability, are a general characteristic
finite-size fermionic systems and are in direct analogy w
those found in simple-metal clusters~as well as in 3He
clusters28 and atomic nuclei29,30!, where electronic shell ef-
fects on the energetics7,8,11,27 ~and most recently shap
dynamics51 of jellium modeled clusters driven by forces ob
tained from shell-corrected energetics! have been studied fo
over a decade.

While these calculations provide a useful and instruct
framework, we remark that they are not a substitute for th
ries where the atomistic nature and specific atomic arran
ments are included12–14,5,6 in evaluation of the energetic
~and dynamics! of these systems~see in particular Refs. 5
and 6, where first-principles molecular-dynamics simulatio
of electronic spectra, geometrical structure, atomic dyna
ics, electronic transport, and fluctuations in sodium na
wires have been discussed!.

Indeed, the atomistic structural characteristics
nanowires12–14 ~including the occurrence of cluster-derive
structures of particular geometries5,6!, which may be ob-
served through the use of high-resolution microscopy,52 in-
fluence the electronic spectrum and transport characteris
as well as the energetics of nanowires and their mechan
properties and response mechanisms. In particular, the
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chanical response of materials involves structural chan
through displacement and discrete rearrangenent of the
oms. The mechanisms, pathways, and rates of such struc
transformations are dependent on the arrangements an
ordinations of atoms, the magnitude of structural transform
tion barriers, and the local shape of the wire, as well
possible dependency on the history of the material and
conditions of the experiment~i.e., fast versus slow exten
sions!. Further evidence for the discrete atomistic nature
the structural transformations is provided by the shape of
force variations@compare the calculated Fig. 3~b! in Ref. 12
and Fig. 3 in Ref. 13 with the measurements shown in F
1 and 2 in Ref. 20#, and the interlayer spacing period of th
force oscillations when the wire narrows. While such issu
are not addressed by models that do not include the atom
nature of the material, the mesoscopic~in a sense universal!
phenomena described by our model are of interest, and
guide further research in the area of finite-size systems in
nanoscale regime. Such further investigations include the
currence of magic configurations~i.e., sequences of en
hanced stability specified by number of particles, size, thi
ness, or shape! in clusters, dots, wires, and thin films o
normal, as well as superconducting, metals, and the effec
magnetic fields which can influence the energetics in s
systems~e.g., leading to magnetostriction effects! through
variations of the subband spectra, in analogy with mag
totransport phenomena in nanowires.38

Several directions for improving the model~while re-
maining within a jellium framework! are possible. These in
clude: ~i! consideration of more complex shapes. For e
ample, in our current model the elongation is distributed o
the entire constriction throughout the process, while a m
realistic description should include a gradual concentra
of the elongation, and consequent shape variation, to the
rower part of the constriction as found through molecul
dynamics simulations;12,14 ~ii ! use of a stabilized-jellium
description53 of the energetics of the nanowire in order
give it certain elements of mechanical stability. In this co
text, note also that from the total energy shown in Fig. 4~c!,
and the corresponding total force@Fig. 5~c!#, it is evident that
in our current model, except for the region of large elong
tion close to the breaking point~i.e., DL/L0>2.5), the wire
is unstable against spontaneous collapse~that is shortening!,
i.e., there are no energetic barriers against such a pro
while both experiments20 and MD simulations13 show that
compression of such wires requires the application of an
ternal force. Improvements of the model in these directio
are most desirable in light of the aforemention
experimental20 and MD simulations13 observations that the
total oscillating forces for elongation and compression
nanowires are of opposite signs~i.e., negative and positive
o
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respectively!, while our current~equilibrium model! is lim-
ited to certain aspects of the tensile part of an elongati
compression cycle;~iii ! inclusion of bias voltage effects in
calculations of the energetics and conductance
nanowires.39,54 While such effects may be expected to ha
little influence~particularly on the energetics! at small volt-
ages, they could be of significance at larger ones. Work
these directions is in progress in our laboratory.
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APPENDIX

In this appendix, we discuss briefly a semiclassical tre
ment of temperature effects on the oscillatory behavior of
force and conductance in nanowires. The grand-canon
thermodynamic potential at finite temperatureT is given by

V52kBT(
i

lnF11expS m2e i

kBT D G , ~A1!

wherei denotes (n,m,p'), andm is the chemical potential.
From Eq. ~A1!, the finite temperature expressions f

Vosc, Fosc, and Gosc differ from those given for the zero
temperature limit in Eqs.~33!, ~35!, and ~36!, respectively,
by a multiplicative factor in the sums of these equatio
This factor is given by55

C~XMQ!5
XMQ

sinh~XMQ!
, ~A2a!

where

XMQ5
2pMkBTa~0!sin~pQ/M !

\vF
, ~A2b!

with vF being the Fermi velocity. ForT50, C(x)51.
Note that the temperature dependence given in Eq.~A2! is

valid for systems withkFa(0)@1, and leads to reduction o
the oscillation amplitudes when 2pMkBT>De, whereDe
5\vF /@a(0)sin(pQ/M)# is an effective energy-level spac
ing of the electrons contributing to the oscillatory parts of t
thermodynamic potential, force, and conductance.
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