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Energetics, forces, and quantized conductance in jellium-modeled metallic nanowires
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Energetics and quantized conductance in jellium-modeled nanowires are investigated using the local-
density-functional-based shell correction method, extending our previous study of uniform-in-shapigwires
Yannouleas and U. Landman, J. Phys. Cheml@, 5780 (1997] to wires containing a variable-shaped
constricted region. The energetics of the wisedium as a function of the length of the volume-conserving,
adiabatically shaped constriction, or equivalently its minimum width, leads to the formation of self-selecting
magic wire configurations, i.e., a discrete configurational sequence of enhanced stability, originating from
guantization of the electronic spectrum, namely, formation of transverse subbands due to the reduced lateral
dimensions of the wire. These subbands are the analogs of shells in finite-size, zero-dimensional fermionic
systems, such as metal clusters, atomic nuclei, 3tel clusters, where magic numbers are known to occur.
These variations in the energy result in oscillations in the force required to elongate the wire and are directly
correlated with the stepwise variations of the conductance of the nanowire in unie2/bf. The oscillatory
patterns in the energetics and forces, and the correlated stepwise variation in the conductance, are shown,
numerically and through a semiclassical analysis, to be dominated by the quantized spectrum of the transverse
states at the most narrow part of the constriction in the Wis6163-18208)01908-(

I. INTRODUCTION tion method (SCM), developed and applied previously in
studies of metal clustefst! Specifically, we showed that in a
Understanding the physical origins and systematics undejellium-modeled, volume-conserving, and uniform in shape
lying the variations of materials properties with size, form of nanowire, variations of the total energparticularly terms
aggregation, and dimensionality is one of the main chalassociated with electronic subband correctiarnmn elonga-
lenges in modern materials research, and it is of ever increasion of the wire lead tself-selectiorof a sequence of stable
ing importance in the face of the accelerated trend towardmagic” wire configurations (MWC's, specified by a se-
miniaturization of electronic and mechanical devites. quence of the wire’s radii with the force required to elon-
Interestingly, it has emerged that concepts and methodgate the wire from one configuration to the next exhibiting
ologies developed in the context of isolated gas-phase clugn oscillatory behavior. Moreover, we showed that due to the
ters and atomic nuclei are often most useful for investigaguantized nature of electronic states in such wires, the elec-
tions of finite-size solid-state structures. In _particyla_r, it haSronic conductance varies in a quantized stepwise majmer
been shown most recenty through first-principles it of the conductance quantugy=2e?/h), correlated

molecular-dynamics hsir(r;ula.tions tfhat as me.ta(gx.c)diun) hWith the transitions between MWC's and the above-
nanowires are stretched to just a few atoms in diameter, the | .o e ok

reduced dimensions, increased surface-to-volume ratio, and | " .« paper, we expand our LDA-based treatment to

impoverished atomic environment, leff‘d to the formatlon Ofwires of variable shape, which allows for a constricted re-
structures, made of the metal atoms in the neck, which can. o S
on. From this investigation, we conclude that the above

be described in terms of those observed in small gas-pha . o . )
sodium clusters; hence they were terfdsupported self-selection principles and the direct correlations between

cluster-derived structure€CDS'S). The above prediction of the ogcillatory patterns in the ene_rgetic stability, forces,. anq
the occurrence of “magic-number” CDS’s in nanowires, dueStepwise vgrlatlons of the. guantized co.nductan.ce'malntaln
to characteristics of electronic cohesion and atomic bondind?" the variable-shaped wire as well, with the finding that
in such structures of reduced dimensions, is directly correlinderlying these oscillatory patterns and correlations are the
lated with the energetics of metal clusters, where magiccontributions from the narrowest region of the wire. Further-
number sequences of cluster sizes, shapes, and structural nigore, this finding is analyzed and corroborated through a
tifs due to electronic and/or geometric shell effects have beefemiclassical analysis.
long predicted and observéd® Prior to introducing the model studied in this paper, it is
These results lead one directly to conclude that othemppropriate to briefly describe certain previous theoretical
properties of nanowires, derived from their energetics, maynd experimental investigations, which form the background
be described using methodologies developed previously iand motivation for this study. Atomistic descriptions, based
the context of clusters. Indeed, in a previous wttkye  on realistic interatomic interactions, and/or first-principles
showed that certain aspects of the mechanical respaese modeling and simulations played an essential role in discov-
elongation force and electronic transporte.g., quantized ering the formation of nanowiré$,and in predicting and
conductancein metallic nanowires can be analyzed usingelucidating the microscopic mechanisms underlying their
the local-density-approximatiofi-DA-) based shell correc- mechanical, spectral, electronic, and transport properties.
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These predictiotd~1* [particularly those pertaining to

generation of nanowires through separation of the contact L o@) ; ‘ R,

between two material bodies, size-dependent evolution of the O L2 z

wire’'s mechanical response to elongation transforming from

multiple slips for wider wires to a succession of stress accu-

mulation and fast relief stages leading to a sequence of struc- FIG. 1. Schematic drawing of the jellium background of a

tural instabilities and order-disorder transformations local-variable-shaped nanowire. Theylindrical) symmetry axis of the

ized in the neck region when its diameter shrinks to about 18/re 1 along thez axis, with a constricted reglor_l{LIZsz__

A, consequent oscillations of the elongation force and th snLéz[)SggsEnbg;j] bé a:(le(gingcla_r/\g;e ic;f ttrk:: f;g?j;sﬁ:cif: ?Jl:i(?f))rlln

calculated high value of the resolved yield stress4 GPa part of the V\?i're o.uts(i)de the constriction.

for Au nanowires, which is over an order of magnitude that

of the bulk, as well as anticipated electronic quantization

effects on transport propertiés have been corroborated in

a number of experiments using scanning tunneling and forc

microscopy:>1®=?! preak junctiong? and pin-plate

tance, calculated as a function of elongation for variable-
shaped sodium nanowires, are given in Sec. Il B, including a
fiscussion on the main finding that the contribution from the
techniqueB2 at ambient environments, as well as undernarrowest part of the constriction _underlies the properties of
’ these quantities and the correlations between them. These

ultrahigh vacuum and/or cryogenic conditions. Part'CUIarlycorrelations between the energetic and transport properties

pertinent to our current .StUdy are experimental observationgnd their dependence on the narrowest part of the nanowire
of the qscnlatory behavior of the e_Iongat|on forces and the re further analyzed in Sec. lll, using a semiclassical treat-
correlations between the changes in the conductance and t nt. We summarize our resul',[s in Sec. IV

force oscillations; see especially the simultaneous measure-
ments of force and conductance in gold nanowires in Ref.

20, where in addition the predicted “ideal” value of the Il. DENSITY-FUNCTIONAL DESCRIPTION
critical yield stress has also been measufeee also Ref. OF JELLIUM NANOWIRE
21).
The LDA-jellium-based model introduced in our previous A. Theory
papet® and extended to generalized wire shapes herein, 1. Shape of constriction

while providing an appropriate solution within the model’s ) oo ) . .
assumptions(see Sec. ) is devoid by construction of Consider a jellium nanowire with circular symmetry
atomic crystallographic structure and does not address issu@80Ut the axis of the wirez(axis). The wire may contain a
pertaining to nanowire formation methods, atomistic con-constricted regiorisee Fig. ], that is, a section of length
figurations, and mechanical response mdaes., plastic de- where the cross-sectional radia&z) varies along the axis as
formation mechanisms, interplanar slip, ordering and disor-

dering mechanismsee detailed descriptions in Refs. 12, 13, a(z)=apt+(Ro—ag)f(z), —Ll2zszs<L/2, (I

and 14, and a discussion of conductance dips in Ref. 18

defects, mechanical reversibilit;}* and roughening of the Wwith f(—2)=f(2) (thez=0 plane passes through the middle
wires’s morphology during elongatiéH, nor does it con- of the wirg) andf(=L/2)=1. Ry=a(=L/2) is the uniform
sider the effects of the above on the electron spectrum, trangadius outside the constricted section, age=a(0). In this

port properties, and dynamiés\evertheless, as shown be- paper, we take a parabolic shafig) = (2z/L)? for the de-
low, the model offers a useful framework for linking scription of the constricted regidm wire of uniform cross
investigations of solid-state structures of reduced dimensionsection throughout correspondsftz) =1].

(e.g., nanowirgswith methodologies developed in cluster We also assume that elongation of the wire occurs in the
physics, as well as highlighting certain nanowire phenomenagonstricted region while maintaining its volume constant
of mesoscopic origins and their analogies to clusters. (this is supported by MD simulatiof, namely, by requir-

In this context, we note that several other treatments reing that
lated to certain of the issues in this paper, but employing
free-electron models, have been pursued most rec&y. L/2 5
In both of these treatments an infinite confining potential on ZJ a*(z)dz=RgL, 2
the surface of the wire is assumed and only the contribution
from the kinetic energy of the electrons to the total energy i
considered, neglecting the exchange-correlation and Hartr

2 . .o~ Pair of parametersRy,Lg) by O; we further assume that
terms, and electrostatic interactions due to the positive ioni <L ]pFor the pa?gbo(lji)c s)klla(/;e assumed in this paper, the
(jellium) background. A comprehensive discussion of the_° % :

S : smallest cross-sectional radius is determined for any given
limitations of such free-electron models in the context of v 9

sLs )
calculations of electronic structure and energeteeg., sur- value ofLo=<L<5L, from Egs.(1) and(2) as
face energigsof metal surfaces can be found in Ref. 26.
In Sec. Il A, we outline the LDA-based shell correction RO{_lJr

0

Sor given values oRRy andL, [hereafter we will denote the

LO 1/2
30r—5)

: ()

method, describe the jellium model for variable-shaped 8o 4
nanowires, and derive expressions for the energetics of such

nanowires(density of states, energy, and forc&lumerical i.e.,ag=R, for L=Lg, anday=0 (i.e., breakage of the wiye
results pertaining to energetics, force, and electronic conduder L=5L,.
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2. Shell correction method whereV,, is the Hartredelectronig repulsive potential, is

The shell correction method we employ is based on thdN€ repulsive electrostatic energy of the ions, a‘EQl:
LDA theory. In the shell correction methdd-2"28(scm),  =J&dpldr is the exchange-correlatiofxc) functionaf
the total LDA energyE-(L,0), for any configuration of the ~(the correspondmgomxc potential is given ag,(r)
wire (specified byL and ) is separated as =0Exdpl/dp(r)). & are the eigenvaluesinon-self-

consistent of the single-particle Hamiltonian,
E+(L,O)=E(L,0)+AEL,0), (4) 2
~ N = — 2 .

whereE(L,0) varies smoothly as a function of the system H 2meV +Vin, ©

size (L) while AEg(L,0O) varies in an oscillatory manner _ . ' L

with L, as a result of the quantization of the electronic states\.NIth the mean-field potential given by

AEg(L,0) is usually called a shell correction in the Vm[p‘“(r)]=VH[p‘“(r)]+ch[p‘“(r)]+vl(r), (7)
nucleaf®>*°and clustét!! literature; we continue to use here
the same terminology with the understanding that the ele

tronic levels in the nanowire form subbands, which are thd®"S: : .
In electronic structure calculations where the corpuscular

analog of electronic shells in clusters where the size of the f the i is included ll-el d
system is usually given by specifying the number of atomd!ature of the ions is includede., all-electron or pseudopo-

N. The SCM method, which has been shown to yield resultéential ca_llculatior_ﬂ_s p"" may be taken_as_ a superpos_ition of
in excellent agreem,ent with experimehts?® and self- atomic-site densities. In the case of jellium calculations, we

11 H H
consistent LDA calculatiofs? for a number of cluster sys- have showfh that an accurate approximation to the KS-
tems, is equivalent to a Harris functiondt,{,,i approxi- LDA totaj energy 1S obtqlned by using the Harris functlpnal
mation to the Kohn-Sham LDA with the input densigy", with the input densityp™ in Eq. (5) evaluated from a varia-

obtained through variational minimization of an extendedtior_}f?]I eét_?gdl_eg:homas-lferrfETlia)n-ELDA ca]culgtiqn. db
Thomas-Ferm{ETF) energy functionalEgrd p]. € ) energy functionakered p] is obtained by

The Harris functional is given by the following expres- repla_cing the kineti_c energy terﬁi_[p] in the usual LDA
sion: functional, namely, in the expression

ov,(r) being the attractive potential between the electrons and

occ

1
. 1 . =V +V d
EHarris]:PIn]:El+i=El GiOU'[_J' {EVH[pm(r)] 2 H[p(r)] I(r) P(r) r

ELDA[P]zT[p]"'f

+ [ udotrar+e, ®

by the ETF kinetic energy, given to the fourth-order gradi-
(5  ents as follows?

+ch[Pm(r)]] pm(l’)dl’ + f f,’xc[pin(r)]dr,

2me _2me (13,42 202383, L (Vp)? 1 2\-2/3 1/3
?TETF[P]—?f tETF[P]dr—f [5(377) p +§5 pS +ﬁ)(377) P
1[{Vp\* 9(Vp)\2A Ap\?
<l e
3l p 8l p/ p p
|
The optimal ETF-LDA total energy is then obtained by occ _ _
minimization of Egtd p] with respect to the density. In our =E €i— | p(DVegrn)dr—=Terd p]. (20
=1

calculations, we use for the trial densities parametrized pro-

files p(r;{y;}) with {y;} as variational paramete(the ETF-

LDA optimal density is denoted ag). The single-particle 3. Adiabatic assumption

eigenvalueq e’} in Eq. (5) are obtained then as the solu-  The volume density of the positive background is given
tions to the single-particle Hamiltonian of E) with Vi, by p. =3/(4=r3), wherery is the Wigner-Seitz radius char-
replaced byere [given by Eq.(7) with p"(r) replaced by acteristic to the material, and thus the number of positive
(r)]. Hereafter, these single-particle eigenvalues will be decharges in the constriction is

noted by{¢;}.

In our approach, the smooth contribution in the separation N*(0)=3R3Lo/(4r3). (1)
(4) of the total energy is given bcrd p], while the shell . _ . _ . .
correctionAEg, is simply the difference Since the nanowire contains a constricted region of vari-

_ _ able cross-sectional radiwgz) [see Eq.(1)], we define a
AE=Enanid P1—Eerd p] linear (i.e., density per unit length of the nanowirback-
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ground densityp,” (z;L,0) =3a%(z)/(4r3), which when in- aK™M(z,€;L,0)

tegrated over the total length of the wire yielNs (O) [see DI(Z’E?L*O):;%1 T®[G_ €nm(Z L, 0)],
Eq. (11)]; Corresporldingly, the variational electronic volume (16)
density p(x;L,0)=p(r,z;L,0), and in our calculations it
takes the form where spin degeneracy has been included, @nds the
- Heaviside step function.
SrzL,0)= Po(2) a2 From Eq.(14), we obtain
[1+exp{[r—ro(2)]/a(2)}]""?

with po(2), a(z), and y(z) as z-dependent variational pa- D(z,e:L,0)=
rameters. In the ETF calculatiop, is determined variation-

ally at a givenz as the one associated with a uniform cylin- -
der of radius a(z) (adiabatic assumption under the XO[e— €nm(z;L,0)]. 17)
normalization condition for local charge neutrality, namely,

27rfdr[r'5(r,z;L,O)]:pﬁ(z;L,O) [which fixes the fourth We may now define an integrated density of states in the

parameter o(z) in Eq. (12)]. The optimizedp allows then ~ constriction
calculation of the smooth contribution for any length of the
constriction,E(L,0)=Eg«(L,0) in Eq. (4). Li2
The calculation of the shell-correction terdE(L,0), D(elL,0)= f dz D(ze€L,0). (18)
in Eq. (4) proceeds by evaluating first the density of states in
the nanowire. Assuming an adiabatic separation of the )
“fast” transverse and the “slow” longitudinal The total number of states up to energyin the con-
variablest>3334the electronic wave functions in the classi- Stricted region of the wire is given by
cally allowed regions may be written as

om 1/2
2;2) % [e— enm(z:L,0)] 17

ane(r,qs,z;L,O)OCl//nm(r;Z,L,O)eimd’eifzdzrkﬂm(zr?E'L'O), Nf(e;L,O)Zfode’D(e’;L,O)
13
where k"™ is the local wave number along the axia) ( _ L/2 \/
direction of the nanowire =g n — le="€nm(z:L,0)]

kim(Z,E;L,O)Z XO[e— enm(Z;L,(’))]. (19

om _ 1/2
h—;[e— enm<z;L,0>]] . (14

4% s the (t | | ei | ¢ ¢ Since the total number of electrons in the constricted re-
and €, is the (transversglocal eigenvalue spectrum a gion is N*(0) [see Eq.(11)], the Fermi energyer(L,0),

To calculate this spectrum for a wire of a configuration ) : . ; . L
specified by ,0) for any value ofz, the eigenvalues of a I?(;”? I\év(;re(lv;;thi 2 configuration specified by (0) is given

cylindrical wire with a(uniform) radiusa(z) are calculated

from the two-dimensional Schdinger equation
N~ (er;L,0)=N*(0). (20

ptfd? ad e
2mg gr2  rdr 2 Y Verdr;zL,0)i Using the above and E@10), the shell-correction term,
="enm(z,L,0) . (15)

AEg{L,0)=Epard p;L,Ol-Eerd p:L,O], (21
The linear(per unit length, one-dimensional density of
states at, D|(z,¢€;L,0), is given by may be calculated as

er(L,O L/2
AEsh(L,O)zf M e[ eD(e:L.0)]- zwf dzf dr rp(r,z;L,O)\Verdr,z.L,0)
0

L2 % _
—wa dzJ' dr rterd p(r,z;L,0)], (22
—L/2 0
whereVee is the ETF potentia{Hartree, exchange-correlation, and electron attraction to the positive backpendtd g is
the volume density of the ETF kinetic-energy functiofsge Eq(9)].
In actual calculations, we invert the order of integration in the first term of(£2), which then takes the form
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2 (LR

~ 2mg ~ ~
2 dz> [EF+26nm(Z;L,O)]\/_[6F_ enm(ZL,0)]O[ e~ €nn(z;L,0)]. (23
37) L2 mm #2

Note that Eq.(20) implies a common Fermi level for the cuss relate to constrictions with the same setQoparam-
whole constriction for a giveh (i.e., e¢ is not a local prop- eters, namelyl ;=80 a.u. andRy=25 a.u). We found that
erty). Therefore, Eq(23) is not equivalent to integration of for other values ofz (i.e., for 0<|z|<L/2), the potential
the corresponding uniform wire result derived by us in Ref.assumes profiles intermediate between the two profiles
10 over thez coordinate, since therer varies with the —shown here, namely, the depth of the potential well remains
wire's cross-sectional radius. practically unaltered, while its width follows the enlargement
Having calculated the smooth and shell-correction contrif the jellium-background radiua(z), from a, to a(L/2).
butions to the total energy, as a functionlgfthe total elon-  From the three componentgy, V,, andV,, which con-

gation force may be evaiuated as the derivative of the totdfiPUte to the totaVere [see Eq.(7)], we found that for all
energy with respect to, i.e., Fr=—dE;/dL, and the con- these potential profiles, calculated for different values of

tributions to it from the smooth and shell-correction terms@/9Nd the consriction, the xc contribution is the dominant
one, amounting to approximatelty 5.4 eV, while the total

are given byF=—dE/dL, andAF = —dAEg,/dL. electrostatic contributiony,+V,, is much smaller, result-
ing in a characteristic “winebottle” profile familiar from
LDA studies of spherical clustefs.
. _ . Figure 2 also displays the transverse local eigenvalues
In this section, we report results for the elongation of &g associated with the two potential profiles. Naturally, a
sodium nanowire ;=4 a.u), starting with an initial cylin-  ider potential profile yields a larger number of such eigen-
drical constriction of lengthiLy=80 a.u. and radiu®,=25  y3Jues below the Fermi level.
a.u. To illustrate the nature of the electronic spectrum in the
In Fig. 2, we show electronic-potential profiles, nanowires, and its dependencies on the characteristics of the
Verdr;a(z),L,0], for a particular constriction withL/L,  wire, i.e., shape and length, we show in Figa)3lensities of
=1.125 AL=L—L). We display here the potential profiles states,D(e;L,0), calculated for a variable-shaped wire for
calculated at the narrowest part of the constrictiay,  two wire lengths(and consequently two minimal cross-
=a(0)=12.62 a.u] and at its endi.e., ata(L/2)=Rg] (in sectional radii of the constricted regjonThe density of
this paper, all the subsequent numerical results we will disstates for a uniform wire with a radius equal to that of the
unconstricted region of the variable-shaped ofg®wn in
— Fig. 3@] is displayed in Fig. ®).
Two “classes” of features are noted for the variable-
shaped wires(i) those associated with the narrowest con-
stricted region(marked by numbejsvhose radius, varies

B. Results

_‘] [
30(9)

22 upon elongation, andi) those associated with the maximal
—wn [ radius of the constrictiofand with the unconstricted part of
=3 e the wire, which remains constant throughout the elongation

—13(5)
——20(4)
 12(3)
=5 —1@
T Y0

of the wire. Identification of the latter class of featufesv-
eral of which are marked by arroyss facilitated through
comparison with the density of states for the corresponding
uniform wire [Fig. 3(b)]. We observe here that, for the
broaderand thus shortemire [lower curve in Fig. 8a)], six
of the featuregpeaks in the density of states coming from
. L the spectrum of transverse energy levels at the narrowest
0 0 20 30 region of the constriction are located below the Fermi level
r (ou) er [all the peaks in the density of states occur at the energies
of the transverse levels; e.g., compare the location of the
FIG. 2. Potential profiles at the narrowegt(0; left curvé and  peaks in the lower curve in Fig(& with the corresponding
end points ¢= =+ L/2; right curvé of a constriction with an elonga- spectrum on the left side of Fig].2
tion AL/Ly=1.125 (whose O parameters aré =80 a.u. andR, On the other hand, for the much narrowe@nd thus
=25 a.u). The local transverse-mode speciea,,, associated with  |0nge) constricted wire, only one of these peaks is belgw
these two profiles are also displayed along the left and sightes. ~ [S€e upper curve in Fig.(@]. When plotting the density of
The dashed line indicates the Fermi level. For the Q) profile, ~ States atkg versus the elongatiofor equivalently the mini-
the spectrum is labeled with the correspondinm local transverse ~ Mal radius of the constricted regiprthese variations lead to
eigenvaluestf denotes the number of radial nodes plus one,;rand a@n oscillatory pattern, as peaks in the density of states are
denotes the azimuthal angular-momentum quantum numbee  Shifted above the Fermi level, one after the other as the wire
same spectrum is numbered sequentiéitlyparenthesggo facili- is being elongated. These variations are also portrayed in the
tate comparison between the location of the energy levels and thenergetics of the wiréshown in Fig. 4, and in the stepwise
numbered peaks in the density of states given in the lower curve itbehavior of the quantized conductance through the wire ver-
Fig. 3(a). Energies in units of eV, and lengths in a.u. sus length(see Fig. 5 beloy

Energy (V)

LA L

&
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FIG. 3. Densities of states fa@) two configurations of the
variable-shaped wire, ondower curvg with elongationAL/L, FIG. 4. Energies(in eV unit§ of a variable-shaped sodium
=1.125 and narrowest radiag=12.62 a.u(potential profiles and  nanowire, plotted vs the relative elongatia./L,. The initial pa-
local transverse spectra for this case are displayed in Fignd the  rameters? arel,=80 a.u. and}y=25 a.u. The smooth, ETF con-
other with elongatiolAL/L,=2.75 and narrowest radieg=4.57 ;b 1tion (E), the shell correction/ E.y), and the total energy&;)

a.u. (upper curve whose/ axis is shown on the right (b) a are displayed in@), (b), and(c), respectively.
uniform-in-shape wire witlAL/Ly=0 anday,=R,=25 a.u. For all

casesl (=80 a.u. and?y= 25 a.u. The vertical dashed lines denote wire and in a uniform onéi.e., one withf (z)=1 in Eq. (1),

the corresponding Fermi levels. The Fermi level of the constric- . ! .
tions, which for the uniform-in-shape wire is2.82 eV, varies only whose case was discussed in Ref] 4Bows that the ampli-

by 0.05 eV for all the elongations down to the breakage pointa)in tudes of the oscillations in the latter case are much larger

the numbered peaks correspond to the locations of the transver;‘@’er an order of magnituO!eThe_ reason for this (_iiffe_rence
energy levels in the narrowest part of the constricfiexy., compare 1S that in the constant-radius wire the quantization into the
the lower curve in@) with the spectrum shown on the left axis of transverse subbands is uniform along the wire, while in the

Fig. 2]. The arrows indicate the locations of some of the transvers&/ariable-shaped case the subband spectrum is different in
energy levels at the end points of the constriction, coinciding withvarious parts of the constriction. While the oscillatory pattern
corresponding peaks in the spectrum of the uniform-in-shape wirés dominated by the spectrum at the narrowest regsme
shown in(b). also Sec. lll belowy; the amplitudes are influenced by the
transverse-mode spectra from other parts of the constriction.

From Fig. 4, we observe that the magnitude of the smootionsequently, the number of local minima in the total en-
ETF contributionE to the total energyE; of the wire is ergy E; (and thus the number of wire con_flguratlons, €.,
dominant, with the shell-correction contributioAE,,,, ex- €ngths, for which the total forcé vanishesis larger for a
hibiting an oscillatory pattern, with local minima at a set of Uniform wire than for a variable-shaped one. Additionally,
wire lengths(and correspondingly a set of minimal cross- V& suggest that for materials with relatively smaller surface

sectional radji, which we term “magic wire configurations” energies ahlarger rlwumber of IOC%' mri]nima mayhoccudr. hell
(MWC'’s), i.e., wire configurations with enhanced energetic From the t(_)ta _energy, an L € smoot “an shell-
stability. When added to the smooth contribution thesgsorrection contributions to it, we obtain the total “elongation
shell-correction features lead to local minima of the totalforce” (EF) Fy and the corresponding components offit,
energy toward the end of the elongatitand consequently, andAFg,. These results are displayed in Fig. 5, along with
narrowing process, while for thicker wireé.e.,AL/L,<2.5 the conductance of the wire evaluated, in the adiabatic ap-
in Fig. 4) they are expressed as inflection points of the totaProximation(i.e., no mode mixin&) and neglecting tunnel-
energy(in this context, see the total-force curivg in Fig. 5,  ing effects (assuming unit transmission coefficients for all
where the local minimum i, corresponds to the point with the conducting modgsusing the Landauer expressiori
F+=0 marked by an arrow

We note here that the occurrence of local minima in the

total energy results from a balance betwekBg, and E,
with the latter increasingthat is acquiring less negative val-
ues as the constriction elongates due to the increasing corwheregy=2e?/h, and the spectrum of the transverse modes
tribution from the surface of the constriction. Comparison ofis evaluated(for each constriction lengihat the narrowest
the magnitudes of the shell corrections in a variable-shapepart of the constrictionz=0. Tunneling contributiongsee,

G(L,0)=00> Oler— €nn(z=0;L,0)], (29
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o

the sequential decrease in the number of transverse subbands
(calculated at the narrowest section of the wibelow ep

(i.e., conducting channelas the constricted part of the wire
elongateqgand thus narrows Additionally, we note that the
magnitude of the total force is comparable to measured ones
(i.e., in the nanonewton rangerhe magnitude of the total
force in sodium nanowire@ot measured to datés expected

~

FLON oF, 0N F@N

-05 to be smaller than that found for gold nanowif&$! due
mainly to differences in the electron densities and surface
04 energies of the materials.
-12
~ E Ill. SEMICLASSICAL ANALYSIS
I p ) o
o s As discussed above, the total energy of the wire is char-
— 0 acterized by local minima and inflection points occurring for
g % ] a set of wire lengths, or equivalently a set of minimal cross-
s I ] sectional radii of the constriction, and are reflected in the
S 5 | ! . | ] oscillatory patterns of the elongation force. These features
0 1 2 3 correspond to the oscillatory shell-correction contributions
AL/LO and originate from the spectrum of transverse modes at the

narrowest part of the constriction. Moreover, these patterns
FIG. 5. (8)—(c) The smooth, ETF contribution to the forcE),  correlate with the locations of the quantized conductance
shell-correction force AFg;), and total force ), corresponding  Steps, which are determined by the transverse-mode spec-
to the energies shown in Figs(aj-4(c), plotted vs the relative trum at the narrowest regidie., the number of conducting
elongationAL/L,. The arrow in(c) indicates the poinE+=0 cor- ~ modes beloweg, and their degeneracies
responding to the local minimum in the total energy shown in Fig.  To further investigate the origins of these correlations, we
4(c). The dashed lines indicate the zeroes of yhaxes. Forces in  present in this section a semiclassical analysis of the density
units of nanonewtons(d) The conductancés for the variable- of states, energetics, forces, and conductance in a free-
shaped wire in units ofi,=2e%/h, plotted vsAL/L,, evaluated as electron nanowire modeled via an infinite confining potential
described by Eq24). (e) The variation of the cross-sectional radius on the surface of the wire. As in the abofsee Fig. 1, we
(in a.u) of the narrowest part of the constriction, plottedAs/L,  model the constricted region of the wire as a section with a
[see Eq(3), with L,=80 a.u. andRy=25 a.ul. slowly (adiabatically varying shape. Dividing the constric-
tion into thin cylindrical slices, the solution of the Schro

e.g., Ref. 38 mode-mixing, and nonadiabaticity may affect dinger equation for each slice is of the form
the sharpness of the conductance steps, and/or introduce

some interference-related features, particularly near the tran- = A (kr)emeeiPiz) (25)
sitions between the conductance plateaus. These effects,
which can be included in more elaborate evaluations of thevhere.4 is a normalization constanp, is the electron mo-
conductancé®* do not modify the conclusions of our mentum along the axis of the wird(«r) is the Bessel
study. function of orderm, and k= (2m.e—p?)*%4.

Also included in this figure is a plot describing the varia-  Consider first a uniform cylindrical wire with a constant
tion of the minimal cross-sectional radiag with the length  cross-sectional radits With the infinite wall boundary con-
of the constrictior{see Eq(3)]. dition assumed here, the single-particle electronic energy

As evident from Fig. 5, the oscillations in the force result- jevels in the wire are expressed in terms of the roots of the
ing from the shell-correction contributions are prominent. InBessel functionsy,,,, as

AFg,, we observe that the locations of the zeroes of the

force situated at the right of the force maxima occur for 5242 p?
values ofAL/L, which coincide with the locations of local ﬂ+ =
minima in the shell-correction contribution to the energy of 2mea?  2Me
the wire(i.e, for a sequence of minimal cross-sectional radii

corresponding to MWC’s In the total forceF; only one of Here we remark that in the semiclassical approximation
these points(where F=0) remains[i.e., the one corre- the electron performs a complicated trajectory inside the
sponding to the local minimum in the total energy towardswire. All the semiclassical trajectories are tangent to the
the end of the elongation proce&ee Fig. 4], for the rea- caustic surfaces of a set of concentric cylinders inside the
sons discussed above in connection with the energetics of thiire.*> Quantization of the electronic states leads to selection
wire. Nevertheless, the oscillations in the total force correlat®f only a certain subset of trajectories associated with a cer-
well with those in the total energy of the wire, which as tain set of radiir ,, of the caustic surfaces, corresponding to
discussed above originate from the subband spectrum at tlalowed values of the azimuthal quantum numbens,i.e.,
narrowest part of the constrictiofsee also Sec. lil Also,  «r,=m; this description is closely related to the semiclassi-
the locations of the local maxima in the total force correlatecal periodic orbit theory? In the course of developing semi-
with the stepwise variations in the conductance signifyingclassical methods, Keller and Rubinthave demonstrated

(26)

€nmp, =
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that the Debye asymptotic expansibof the Bessel func-

4879

where e,=%2/(2ma?), andK is the electron wave vector.

tions (1<m< «r) provides an accurate approximation to the The two terms in Eq(29) correspond to the contribution

eigenfunctionJ,,(«r), i.e.,
1/2
Jm(r)~(;) (K2r2—m2)_1’4sir{(f<2r2—m2)1/2

m

v
—marccos —
KI

+—|.

7 (27)

Th!s approxmatlon is valid in the region between the Cf"‘u_St.'ccross—sectional radius. In a wire with a variable shape, the
cylindrical surface and the boundary surface of the wire; in
the region inside the caustic surface> «r) the solution

decays exponentially. In this approximation, the equation fo

the asymptotic values of the Bessel-function zeroes has t

form

m 1
(2 n—m?)2— marcco% 7—) = 1T( n— Z) . (29
nm

from the point where the phase is stationary and from the end
points in the sum(integra) over m (see discussion in Ref.
46). While the second oscillatory term in EQR9) has a
smaller amplitude than the first ofley a factor of Ka)?],

it corresponds to an important class of electronic states, with
m~Ka, localized near the surface of the witthe so-called
whispering gallery staté$.

Until now we discussed a uniform wire with a constant

cross-sectional radii depend anas discussed in connection

P/vith Eq. (1). Substituting the dependence of the radii in Eq.

hgg), i.e., replacinga by a(z), we need to perform an inte-

gration overz [see Eq(18)]. This integration involves evalu-
ation of integrals of the form

L/2 )
I=Re f g(z)e'“ka@qz, (30)
—L/2

First we calculate the density of states whose evaluatiomwhere for the first term in Eq(29 g(z)=a(z) and «
involves, after integration ovep, , double sums over the =2Msin(7zQ/M), and for the second ong(z) = va(z) and

guantum numbera andm; n=1,2,... m=0,£1,+2, ...

a=2mM. The fast oscillatory character of the exponential

[see Eq(17)]. Applying sequentially the Poisson summation factor[i.e., Ka(z)>1 for all z] relative to the slow variation
formula to both sums and separating the oscillatory termsf g(z) allows us to use the standard stationary phase

(note that in our semiclassical approximatia@>1) in

complete analogy with Refs. 45 and 46, we obtain for the

density of stategper unit length,

method?’ obtaining

2 1/2
m[m} g(0)Re{ex{i aKa(0) +im/4]}

e M/2
2 1 T
oo 25, ¥ dal 70
maean=2 =1 M | M +———g(L/2)Re{—iexdiaKa(L/2)]},
aKa'(L/2)
(7mQ\ wM
X cog 2MKasin| == | + —- (31)
. wherez=0 is the stationaryextremum point, the second
22 1 T term is the contribution from the end-points of the integral,
RNl 2mMKa+ 7, and primes denote differentiation with respectttJsing the
a

(29

above, and after simple algebraic manipulations, we obtain
for the oscillatory part of the density of states,

22 M2 7Q\1Y7 & 1¥22m.a(0) 7Q\ w 1
0s I Tl einl = N inl — — —
D%qe)= 7TME:2 Qzl {Mm[sm( v ” Z[Ka”(O)} e ws{ZMKa(O)sm( v )+ 5 M+2)
1 2maa(L/2) [(mQ\ =M 225 (1] 1 (%21
+Wﬁ2Ka’(L/2)S'r{2MKa(L/z)Sm<V +T} 7761/4M2=1 M|Ka"(0)] a(0)
2m.a2(0) | ¥ 1 [2ma?(Li2) | ™ w
X| ————| co§27wMKa(0)]— cos 2wMKa(L/2)+ —| ;.
12 M2 Ka'(Li2)a(L/2)| A2 4

(32

The density of states of the wire contains oscillatory contributions from the narrowest cross section of fliestvaed third
terms in Eq.(32)] and from the wire's-end cross sectiofggcond and fourth termsThe amplitudes of the latter oscillations
are smaller.

Having obtained the expression for the oscillatory part of the density of states, we can calculate now the semiclassical
approximation to the grand-canonical thermodynamic poterfiallsee the Appendix; at zero temperatu®=[(e
—eg)D(€)de]. Restricting ourselves for brevity to the largest contribufithrat is, to the first term in Eq32) corresponding
to the main contribution from the narrowest part of the Wikge get for the oscillatory part d,
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o M/2

05— 2% 3 S L G192m0/M)cos 2Mkea(0)si QM) + | M+ 33
mkga"(0)a(0)M=2 Q=1 M7 (mQ/M)eo FOISImQINDT 5 2/ %9
- =, &

From this expression, the oscillating part of the force as a function of the length of the constricted[regi@{0) in
general depends dn, see e.g., Eq3)] is given by

- Q%€ 9a(0) 34
which upon substitution of Eq33) yields
deck¥ga(0)/9L] & M2 E{ T 1)
0S| ~ _ T ein— 12 i +— ——11.
FOs{L) o (0a(0) M:QQ;MS/ZS'” (mQ/M)cog 2Mkga(0)sin(7Q/M) + | M= 5 (35)

The expression for the conductance of the wire following the Landauer formula involves evaluation of the number of
transverse states in the narrowest part of the wire. Following Ref. 48,

2e?\[kza(0)]?| 2 8 1 S
GN(T 5 | ka0 " s a0 e & e (TM)

= H (36)

xco{zm k,:a(O)sin(wQ/M)nLg( M-

which can be expressed as a function of the length of theestigation of jellium-modeled uniform nanowirgsMore-
constriction[see e.g., Eq.3); we remark here that our semi- over, in the current study of a wire with a varialgéliabati¢
classical treatment is valid for any adiabatic wire sfape  shaped constriction, we found that the oscillatory behavior of
The nonoscillating contributioicoming from the first  the energetic and transport properties is governed by the sub-
two terms in curly bracke}sdescribes the Sharihconduc-  hand quantization spectrurermed here electronic shellat
tance of the constriction and the Weemiclassical correc-  the narrowest part of the constriction. This characteristic is

tions, and the third term describes conductance quantum ogypported and corroborated by our semiclassical analysis
cillations as a function o&(0). From a comparison of the (gec, ).

expression for the oscillatory contribution to the focy. We reiterate here that such oscillatory behavior, as well as

(35)] with the (_)scillatory cqntribution to the cond_uctancg the appearance of “magic numbers” and “magic configura-
[Ifql (33)%’ t::te d:]rgct')t iﬁr(rjelangg b(net\t/rv]een thirmr/r? 'Sf ;:mr?evd';tions” of enhanced stability, are a general characteristic of
ately evident, and both depend on the Spectrum of Tansversiiq qjze fermionic systems and are in direct analogy with
m_odes(c_:ondqctmg channe]sa_lt the narrowest part_of t_he those found in simple-metal clustetas well as in3He
wire. This is in agreement with the results shown in Fig. 50Iuster§8 and atomic nuclé®®, where electronic shell ef-

obtained through the LDA-SCM method.
! "g fects on the energetit&'1?’ (and most recently shape

dynamics? of jellium modeled clusters driven by forces ob-
tained from shell-corrected energejitsve been studied for

In this paper, we extended our investigatitfnsf energet-  over a decade.
ics, conductance, and mesoscopic forces in a jellium mod- While these calculations provide a useful and instructive
eled nanowire(sodiun using the local-density-functional- framework, we remark that they are not a substitute for theo-
based shell correction method to variable-shaped wires, i.eries where the atomistic nature and specific atomic arrange-
containing a constricted region modeled here by a paraboliments are includéd=***8in evaluation of the energetics
dependence of the cross-sectional radii in the constriction ofand dynamick of these systemgsee in particular Refs. 5
z (see Fig. 1 The results shown above, particularly the os-and 6, where first-principles molecular-dynamics simulations
cillations in the total energy of the wire as a function of the of electronic spectra, geometrical structure, atomic dynam-
length of the variable-shaped constricted regiand corre- ics, electronic transport, and fluctuations in sodium nano-
spondingly its narrowest widihthe consequent oscillations wires have been discusged
in the elongation force, the corresponding discrete sequence Indeed, the atomistic structural characteristics of
of magic wire configurations, and the direct correlation be-nanowire$?=* (including the occurrence of cluster-derived
tween these oscillations and the stepwise quantized condustructures of particular geometriés, which may be ob-
tance of the nanowires, originate from quantization of theserved through the use of high-resolution microsctfpip-
electronic statesi.e., formation of subbanglglue to the re- fluence the electronic spectrum and transport characteristics,
duced lateraltransverspdimension of the nanowires. These as well as the energetics of nanowires and their mechanical
results are in correspondence with our earlier LDA-SCM in-properties and response mechanisms. In particular, the me-

IV. CONCLUSIONS AND DISCUSSION
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chanical response of materials involves structural change®spectively, while our current(equilibrium model is lim-
through displacement and discrete rearrangenent of the ated to certain aspects of the tensile part of an elongation-
oms. The mechanisms, pathways, and rates of such structu@mpression cycleiii ) inclusion of bias voltage effects in
transformations are dependent on the arrangements and amalculations of the energetics and conductance of
ordinations of atoms, the magnitude of structural transformananowires:>>* While such effects may be expected to have
tion barriers, and the local shape of the wire, as well adittle influence(particularly on the energeticat small volt-
possible dependency on the history of the material and thages, they could be of significance at larger ones. Work in
conditions of the experimeni.e., fast versus slow exten- these directions is in progress in our laboratory.

siong. Further evidence for the discrete atomistic nature of
the structural transformations is provided by the shape of the
force variationgcompare the calculated Fig(l8 in Ref. 12

and Fig. 3 in Ref. 13 with the measurements shown in Figs.
1 and 2 in Ref. 20 and the interlayer spacing period of the  This research was supported by a grant from the U.S.
force oscillations when the wire narrows. While such issue®epartment of EnergyGrant No. FG05-86ER45234and

are not addressed by models that do not include the atomistife AFOSR. Useful comments by W.D. Luedtke are grate-
nature of the material, the mesoscofiit a sense universal fully acknowledged. Calculations were performed at the
phenomena described by our model are of interest, and mageorgia Institute of Technology Center for Computational
guide further research in the area of finite-size systems in thRlaterials Science.
nanoscale regime. Such further investigations include the oc-

currence of magic configuration§.e., sequences of en-

hanced stability specified by number of particles, size, thick-

ness, or shapein clusters, dots, wires, and thin films of

normal, as well as superconducting, metals, and the effect of | this appendix, we discuss briefly a semiclassical treat-
magnetic fields which can influence the energetics in suchent of temperature effects on the oscillatory behavior of the
systems(e.g., leading to magnetostriction effectirough  force and conductance in nanowires. The grand-canonical

variations of the subbar_1d spectra, in analogy with magnetermodynamic potential at finite temperatdrés given by
totransport phenomena in nanowir8s.
—e
1+ex;('u '
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APPENDIX

Several directions for improving the modélhile re-

maining within a jellium frameworkare possible. These in- 0= _kBTZ In keT
clude: (i) consideration of more complex shapes. For ex-

ample, in our current model the elongation is distributed ovemwherei denotes §,m,p, ), andu is the chemical potential.
the entire constriction throughout the process, while a more From Eq. (Al), the finite temperature expressions for
realistic description should include a gradual concentratio)®, F° and G°° differ from those given for the zero-
of the elongation, and consequent shape variation, to the natemperature limit in Eqs(33), (35), and (36), respectively,
rower part of the constriction as found through molecular-by a multiplicative factor in the sums of these equations.
dynamics simulation&* (ii) use of a stabilized-jellium This factor is given by’

description® of the energetics of the nanowire in order to X

give it certain elements of mechanical stability. In this con- T (Xy) = MQ (A2a)

} : (A1)

text, note also that from the total energy shown in Fig)4 sinh(Xyo) '

and the corresponding total forfieig. 5(c)], it is evident that

) . where

in our current model, except for the region of large elonga-

tion close to the breaking poirite., AL/L(=2.5), the wire 2mMkgTa(0)sin(wQ/M)

is unstable against spontaneous collaftkat is shortening XM= o ) (A2b)
F

i.e., there are no energetic barriers against such a process,
while both experimentf and MD simulation$’ show that  with v being the Fermi velocity. FOF=0, ¥(x)=1.
compression of such wires requires the application of an ex- Note that the temperature dependence given in(&2) is
ternal force. Improvements of the model in these directionwalid for systems wittkra(0)>1, and leads to reduction of
are most desirable in light of the aforementionedthe oscillation amplitudes when@VikgT=A€, where Ae
experiment&’ and MD simulation¥® observations that the =#uvg/[a(0)sin(@Q/M)] is an effective energy-level spac-
total oscillating forces for elongation and compression ofing of the electrons contributing to the oscillatory parts of the
nanowires are of opposite sigfise., negative and positive, thermodynamic potential, force, and conductance.
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