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A semiempirical shell-correction method including ellipsoidal deformations is used to determine
binding energies of open-shell, unpolarizéde, clusters. Shell effects, shapes, and other
ground-state propertigike the chemical potentialare determined®Hey clusters are found to be
substantially less deformed due to their relatively high surface energy as compared to that of
alkali-metal clusterge.g., sodium clusteysAs a result, the size-evolutionary patterns associated
with 3Hey clusters are significantly different than the corresponding ones fgr d\lasters. In
particular, odd—even oscillations and signatures of subshell closures are absent in the’gage of
clusters, while they are prominent in the case of alkali-metal clusters19@5 American Institute

of Physics[S0021-960806)01343-§

I. INTRODUCTION effects in®Hey open-shell clusters in conjunction with their
equilibrium deformed shapeshe influence of deformation
The physics of condensed matter aggregates, such &geds to be accounted for, since it is well known that the
metal clusters,comprising fermionic particles has been the ground state of both open-shell nudfeiand metallic
subject of intensifying research efforts over the past decadeyysterg does not preserve spherical symmgtio this end,
In this context, analogies and methods drawn from nucleaje will use a semiempirical shell-correction meth(8E-
physics proveti™® to be instrumental in advancing our un- scwm), which accounts for ellipsoidatriaxial) deformations.
derstanding of optical ~excitation$; ground-state This method was introducidby us earlier in the context of
properties;>®~® and fission modeés ' of such finite-size  syydies of metal clusters, where it provided a successful in-
systems. In particular, it has been established that a domi”a{Brpretation of experimentally observed systematic size-
factor controlling the ground-state properties and shapes Qfyo|utionary patterns of ground-state properties, such as ion-
disparate finite fermion systen¢such as nuclei and simple- jzation potentials, electron affinities, monomer and dimer
metal clusters, whose nature of bonding and cohesion are @kparation energies, and fission energetics. Furthermore, we
very different origins with widely differing characteristic en- present here additional direct comparison of the oscillating
ergetic and spatial scaleare the shell effects resulting from part (or shell part in the total energy of alkali-metal clusters,
level degeneracies in conjunction with the Pauli principleas well as of the second energy differences, with results ex-

(e.g., for nuclei see Ref. 11; for simple metal clusters segacted from experimental measuremefits,
Ref. 8.

Among rare-gas clusters, helium clusters are unique,
since they remain liquid at very low temperatures due to the
importance of zero-point motion relative to the weak
helium—helium interactio®® Thus, in contrast to heavier Il. OUTLINE OF SEMIEMPIRICAL
noble-gas clusters where geometrical packing of the atoms SHELL-CORRECTION METHOD
controls the stability properties of the ground state, helium
atoms remain delocalized within the volume of the cluster,  According to the SE-SCM, the total energy of the cluster
being confined by an average mean-field potential Welh  E; (usually also denotéd asE, to emphasize the fact that
particular, sinceHe obeys fermion statisticS8Hey clusters  shell corrections have been inclugdesl given as the sum of
may be expected to exhibit certain analogies with atomigwo terms, a liquid-drop-type smooth contributiéh (or
nuclei. Indeed, such analogies, pertaining to the short-rangg), and a Strutinsky-typ& shell correctiorAES!, namely,
character of both the helium—helium and nucleon—nucleon
interactions, have motivated the development of theoretical
Kohn—Sham-typéKS) density functional approaches to in-
vestigations ofHe clusters*1°

Such density functional approaches have yieldled a The general backgrouhd and formulation of this
wealth of information about some propertiesfey clus- method for the case of neutral and charged simple-metal
ters, such as density profiles, compressibility, stability, magiclusteré® has been described in Refs. 8 an@)1Here we
numbers, and shell effects of spherical closed-shell clusterémit ourselves to a discussion of the particular features as-
The deformations of open-shélie, clusters, however, have sociated with each energy term which need to be considered
not been included as yet in such treatments. in order to adapt the SE-SCM to the case of neutk

The aim of the present paper is to calculate the sheltlusters.

ET: ELD+AE§rt1r. (1)
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A. Liquid-drop model for deformed  *Hey, clusters ES, ab[1-—¢?
= — 7a A 3
For neutral clusters, the liquid-drop mo8¢LDM) ex- EXR 2| e Z(h k) +er2(yks) +c ®

presses themoothpart, E, 5, of the total energy as the sum q
of three contributions, namely a volume, a surface, and &n

curvature term, i.e., ES, bc a3 , ,
—on = 5= | 1+ —[(1—e]).7(¢,ky) +ef&(¥,Ky) ]
Eio=Evot Esurt Ecurv Eﬁﬂrv 2a € 8 ! (lﬂ 2 ! (lﬂ 2 ]
9
:Avf dr+of dS+ACf dSk, 2 .
B. The model external potential

wheredr is the volume element andS is the surface dif- Since the magic numbers aﬂeN clusters correspond to
ferential element. The local curvatureis defined by the major closures of arisotropic harmonic osci||atoil'4'23 a
expression«=0.5Rac+Ruin), WhereR ., andR i, are the  natural choice for the external model potential to be used for
two principal radii of curvature at a local point on the surfacecalculating shell corrections in the SE-SCM isaisotropic

of the droplet which models the cluster. In the caséHéN three-dimensional oscillator

clusters, the corresponding coefficients have been deter-
mined by fitting* the total energy from KS-type calculations Hoz — —
for closed-shell, magic spherical clustérs., forN=20, 40, 0 2m*
70, 112, 168, 240, af‘d 330, Wh'Ch ha_ppen to b.e the MagiTne oscillator frequencies can be related to the principal
numbers corresponding to an isotropic harmonic-oscillator

tral potentialto the followi trized . semiaxesa’, b’, and ¢’ [see Eq.(5)] via the volume-
central poten 13lto the following parametrized expression as ., nservation constraint and the requirement that the surface
a function of the numbem\, of atoms in the cluster,

of the cluster is an equipotential one, namely,

h? m*
A+ > (w%xz-i- w§y2+ wgzz). (10

sph_ 2/3 1/3
ELD_avN+aSN +aCN T ap. (3) wla’=w2b’=w3c’=w0Ro, (11)
The following expres§ions relgt_e the, quﬁiCieA‘iS' o,and  \yhere the frequencyy, for the spherical shap@vith radius
A to the corresponding coefficients’s) in Eq. (3), R) was taken according to Ref. 24 to be
3 _ 1 _ 1 h? 5 14.46
A”_ﬁro a,; o= P as; AC_47TI’0 ac. 4 fhwg(N)= m*rgz3l/3N_l/3=? N~ K A2 (12

In Ref. 14, the values of these coefficients were determine¢ihereR,=r, N3 The effective mass is twice the balide
to be a,=-2.49 K, as=842 K, a,=4.09 K, and ag  mass?*i.e.,m* =2m. The unit radiug , is a slowly varying

=—19.8 K. functior?® of N, namely,
In the case of ellipsoidal shapes the areal integral and the 3 iy
integrated curvature can be expressed in closed analytical o(N)=2.44+12.66N"2°-0.2N"'" A. (13)

form with the help of the incomplete elliptic integrals
F(pk) and Z(¢4,k) of the first and second kirfd, respec-  C. Shell correction and averaging of single-particle
tively. Before writing the formulas, we need to introduce spectra

some notations. Volume conservation must be employed,

The single-particle energieg of the anisotropic har-
namely,

monic Hamiltonian(10) are used to obtain the semiempirical
a’b’c’/Rgzabc=1, (5) IStrutinsky shell correctionAEZY, which is defined as fol-
OoWs:

whereR, is the radius of a sphere with the same volume, and oce

a=a'lRy, etc., are the dimensionless semiaxes. The eccen- AES'=S «—E (14)
tricities are defined through the dimensionless semiaxes as sh &4 1 =spr
follows:
where
e?=1-(cla)?,
e§=1—(b/a)2, (6) ESp EI Elfl (15)
egz 1—(c/b)?, is the Strutinsky average of the single-particle spectrum with
f; being appropriate weighting factors.
and the semiaxes are chosen so that Usually Eg, is calculated numericallff However, a
a=b=c. 7 variation of the numerical Strutinsky averaging method con-

sists in using the semiclassical partition function and in ex-
With the notation siny=e,, k,=e,/e;, andks=es/e;,  panding it in powers of%. With this method, for the case of
the relative(with respect to the spherical shapirface and  an anisotropic, fully triaxial oscillator, one finds” an ana-
curvature energies are givérby lytical result, namely,
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ESSC: h(w1w2w3)1/3

y=n/3

3He
1 s, L it w3t 3 2/3 NN N
whereN denotes the number 3He atoms in the cluster. 30,31 _
In the present work, expressioh6) (as modified below *32 £=010
will be substituted for the average p&i,in Eq. (14), while
the sumX=“%; will be calculated numerically by specifying
the occupied single-particle states of the oscillator repre- 18,38 ¢ 28,29 .54“-.‘
sented by the Hamiltonia(10). 6 " * @8
In the case of an isotropic oscillator, not only the smooth 71939 ¢ s S 47' * 53!
contribution, EZ°, but also the Strutinsky shell correction / o 0 TR ‘s % s
(14) can be specified analytically,with the result » 2 :
st 1 o lo,41 122,43 5 46 52 =0
AES ¢ X)= 22 iwo(3N)? — 1+ 12x(1-X)], (17) £,20.40

wherex is the fractional filling of the highest partially filled

harmonic oscillator shell. We see that for a filled shell'(:'G- 1 Th; Hii'-:’t:/heellif Faf_ametef?tﬁpe;gysglsgaéhe elquti"bfium Sf(ljapes
; e Str (y— _ L 203 i corresponding to the global minima of the ey clusters accord-
(maglc clusters havmg 0)’ AEShvdo) 24hw0(3N) » 1N ing to the ellipsoidal model in the range<B6l<60. Observe that the dashed

stead of an expected vanishing value. The vanishing of thgcie corresponds to a value g0.10, compared to a much larger value of
shell correction for magi¢spherical clusters originates from 5=0.70 for Na clustergsee Fig. 2

the fact thaEP'[see Eq(3)] has been fitted to total energies
for these clusters obtained from KS-type calculatibisee
discussion in the context of E¢3)]. To adjust for this dis-

crepancy, we add—AE?,‘{({O) to AESY calculated through We observe that although the parameter can take all
Eq. (14) for the case of open-shell, as well as closed-shelpossible values between 0 amd3 in the case ofHe clus-
clusters. ters, theB parameter exhibits values noticeably smaller than

corresponding values for Na clusters. As a result, the shapes
of *Hey clusters are much less deformed than the shapes of
Nay clusters. Whether these differences in equilibrium
Ill. RESULTS shapes will result in marked differences in various size-
evolutionary patterns, however, needs to the explicitly dem-
onstrated through a comparison of ground-state quantities.
In this subsection, we present systematics 0f3IIHeN This is done below.
and Ng equilibrium triaxial shapes in the randé<60. A
most economical way for such a presentation is through the
use of the Hill-Wheeler parametéts3 and y, which are
related to the dimensionless semiaxesh, andc [see Eq.

(5)] as follows: v=n/3
2 % 6 \‘\ NGN
a= exp{ Vv5/(4m)B cos( y— —) } i

A. Cluster shapes

3

b=exp{ \ol(4m)B COS( y+ Z?W } (18 39,41 o5 *° \ B=070
38,43 )

c=exd \5/(4m)B cosvy], 7834, -33‘.17.32 -® 2
where 8 is unrestricted and €y=</3. A value y#0 indi- . / .
cates a triaxial shape, whilg=0 corresponds to a prolate ahat %o 1‘3
shape, andy=m/3 denotes an oblate deformation. The pa- E,:tz/./ 37 PAR
rameterg provides a measure of the magnitude of the defor- 7 9,360 5, 9 ] 227 10 o3 o4
mation (the origin, i.e., 3=0, corresponds to a spherical 57’] lASO ‘302296 y=0
shape. Sllsee0 || 47,4850

Using the above definitions, the cluster potential energy 2253 lag 52

surfaceqPES’S in deformation space may be easily mapped
and studied. In this manner, one can analyze the topography
of the PES's and Idemlfy the glObaI minimum for each SlzeFIG. 2. The Hill-Wheeler parameters specifying the equilibrium shapes

N. The global minima are plotted in Figs. 1 and 2 for the corresponding to the global minima of the PESH neutral Ng clusters
case of'He and neutral Na clusters, respectively. according to the ellipsoidal model in the range8<60.

8,19,20,40,58

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded-04-Feb-2004-t0-130.207.165.29.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



C. Yannouleas and U. Landman: Fermion microsystems 8737

tom panely as a function oN for *He and neutral Na clus-
ters, respectively. To provide a detailed study of this contri-
bution, three different quantitiggenormalized to the liquid
drop contribution of the corresponding spherical shape
plotted, namely, the shell correction propeXESY (solid
curve, the renormalized total energy at the global minimum
(B,y), AEL(B,v)=E;—E_p(B=0) (dashed-dotted curye
and their normalized total energy associated with corre-
sponding spherical shapes, i.eAE{(8=0)=E{(8=0)
—Ep(B=0)=AESY(B=0) (dashed curve Naturally,
AE+(B,y) does not coincide withESY (the shell correction
proped, since it also contains the liquid drop contribution
due to deformation, i.e.,AE{(B,7)=AES"+E p(B,7)

—E_ p(B=0). The following observations can be immedi-
ately made: The increase of the energy due to the liquid drop
contribution  arising  from  deformation [namely,

E p(B,7)—E p(B=0), which is given by the difference be-
tween the dashed-dotted and the solid cufiesore impor-
tant in®He clusters than in Na clusters. This is a consequence
FIG. 3. Bottom panel: Theoretical SE-SCM oscillatory contributions to the Of the fact that the surface and curvature coeffici¢atsand

total energies of triaxially deforme?l—IeN clusters in the ranges6N=<250. ac) in the case O?He clusters are, in relative terms, substan-

Solid line: The Strutinsky shell correction proper. Dashed-dotted liney; ; e _
(middle ling: Renormalized total energy. Dashed line: Renormalized totaltlally Iarger than the correspondlng coefficients Ogt,Na clus

energy associated with corresponding spherical shégess the first para- ters_(see also Se(_:- IV The shell-correction curvey _Esh , for
graph of Sec. Il B for details Top panel: The gain factorsdefined by Eq.  sodium clusters is much “flatter” between magic numbers

(19). Shell closures occur &1=8, 20, 40, 70, 112, 168, and 240. Energies and exhibits significant fine structure. This fine structure and
in units of degrees K. overall behavior are portrayed almost unaltered in the total
energy curveAE+, which consequently has a profile that is
B. Oscillatory contribution to total energies substantially different from the total energy curve for spheri-
. ) . cal shapes. On the other haritfle clusters exhibit a shell-
Figures 3 and 4 display the oscillatory part of the totalcorrection-proper curve with very little structure between
energies corresponding to global minima in the PESS-  mgajor shells. When the liquid drop contribution is added, the
total energy curve is practically devoid of any fine structure
and, apart from an overall scaling, it closely resembles the

9

Energy (K)

08 , - - ] total energy curve for spherical shapes. This behavior of
i 1 AE; suggests that the per particle ground-state properties
O 04 ] (like IPs, EAs, chemical potential, etavill exhibit rich fine

1 . | . structure in their size-evolutionary patterns in the case of

O sodium?® while, for *He clusters, apart from major-shell fea-

.."' "'.,. tures, they will be rather monotonisee indeed the next
Na A 1 subsectiop The net stabilization energy due to the deforma-
16 F A tion [which is the gain in energy with respect to the renor-

malized total energy of the corresponding spherical shapes,
namely, AE{(8=0)—AE+(8,v)] is remarkably larger in
the case of Na clusters than in the casél®é clusters. To
better quantify this observation, we display at the top panels
of Figs. 3 and 4 the gain factors

9=[AE{(B=0)—AE7(B,7)/AEL(B=0). (19

We observe that, in the plotted size range, the gain factor in

the middle of open shells remains most often larger than 0.5

for sodium clusters, but less than 0.35 fbte clusters. In
articular, for the smaller clusters in the ranye<70, this

FIG. 4. Bottom panel: Theoretical SE-SCM oscillatory contributions to thep . | ny | b

total energies of triaxially deformed neutral \N&lusters in the range factor can acquire values up t% 0.70 for Na clusters, but

2<N=<250. Solid line: The Strutinsky shell correction proper. Dashed—barely up to 0.20 fofHe clusters’

dotted line(middle line: Renormalized total energy. Dashed line: Renor- Since no relevant experimental information exists at

malized total energy associated with corresponding spherical stegithe - asant foPHe clusters, we restrict ourselves to confront our
first paragraph of Sec. Ill B for detajlsTop panel: The gain factorg

. + . .
defined by Eq(19). Shell closures occur &=2, 8, 20, 40, 58, 92, 138, theoretical results foAEy (B,) .fOI’ smgly charged SQd"«'m
186, and 254. Energies in units of eV. clusters, Ng, to corresponding available experimental

Energy (V)
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FIG. 5. Renormalized total energiesoscillatory par, AE;=Er  FiG 6. Theoretical results for the chemical potential*, of *Hey clus-
—Ep(8=0), of small singly charged, cationic Naclusters. Solid line:  ters. Solid line: SE-SCM results with triaxial deformations. Dashed line:

Theoretical results from the SE-SCM method with triaxial deformations. | iquid drop results for corresponding spherical shapes. Energies in units of
Open squares: Experimental results extracted from Ref. 16. Energies in Unitfagrees K.

of eV.

. . . . N D. Second energy differences
results'® This comparison is carried out in Fig. 5, where the 9y

solid line represents our theoretical calculations and the open Another quantity which reflects shell effects in fermion
squares denote the experimental valtfeBhe agreement be- microsystems is the second energy differendgE
tween theory and experiment is remarkable, since both the Ex(N+1)+Er(N—1)—2E(N). For the case ofHe
experimental absolute values and fine structiméd—even clusters, this quantity is displayed in Fig. 8. Again, as was
alternations and their modulationare very well reproduced the case with the chemical potential, only the features at
by the theory. It is worth noticing that the strong attenuationmajor-shell closures are important.

of the odd—even alternation in the rangye=16—19 which is The second energy differences for the case of singly
prominent in the experimental results is also extremely welcharged Ng clusters are displayed in Fig.(8olid line) and
reproduced by the theory. compared to experimental resufspen squargsextracted?

form the measurements of Ref. 16. In contrastHie clus-

C. Chemical potential of 3He clusters and monomer
separation energies of Na clusters

Figure 6 displays the size evolution of the chemical po- - 1
tential, u* =E;(N+1)—E1(N) (solid line), of *He clusters,
along with the liquid drop contributiofdashed ling Apart
from the prominent features at major-shell closures, the fine
structure in-between is practically insignificant.

In contrast, the monomer separation energies,
Din=E7(N—1)—E7(N)+E(1), associated with the pro-
cess Ng —Nay,_; +Na in the case of singly charged clusters
exhibit a rich fine structure between major-shell closures.
This can be seen in Fig(d) where the theoretical results are
confronted with experimental measuremefits addition to
features associated with major-shell closufies., for N=9
and 21, odd—even oscillations and subshell closures at
N=15, 27, 31, and 35 are prominent. The agreement be-
tween theory and experiment is highly satisfactory.

Figure 1b) displays the theoretice[leN calculated un-
der the restriction of spherical shapes. In this case, the dis-
agreement with the experimental data is substantial. This ilFiG. 7. Monomer separation energigs; \, for singly charged, cationic
lustrates further the importance of including deformations inNa\ clusters in the range<6N<39. (a) Solid dots: Theoretical results de-

the theoretical description of fermionic clusters before arriv_rived from the SE-SCM method with triaxial deformations. Open squares:
Experimental measurements from Ref. t§.Solid dots: Theoretical results

ing at final conclusions relating to their propert[es:ee also derived from the SE-SCM method assuming spherical shapes. Open
Refs. 8 and (@)]. squares: Experimental measurements from Ref. 16. Energies in units of eV.
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FIG. 8. Theoretical second energy differencasE, for Hey clusters de-  FIG. 10. Second energy differences,E, for singly charged, cationic po-

rived from the SE-SCM method with triaxial deformations. Energies in unitstassium, K, clusters. Solid line: Theoretical results derived from the SE-

of degrees K. SCM method with triaxial deformations. Open squares: Experimental results
extracted from Ref. 17. Energies in units of eV.

ters, the importance of fine structure between magic number osNotice that the reductiofc d to Nai
is immediately noticeable. The agreement between theorgz)pen squargsiotice that the reductiorrompared to fiain

and experiment is again impressive. In particular, with re- e absolute values portrayed by the experimental values is

gard to the fine structure between magic numbers, all th(‘—f\ve” reproduced by the theory.
odd—even alternations and their modulatidirs., the attenu-
ation in the rang&=16-19 or the enhancements at the sub{V. DISCUSSION AND CONCLUSIONS

shell closureN =15, 27, 31, and 35apparent in the experi- Although both®He and Na clusters are fermionic micro-

mental results are very well reproduced by the theory. ) : .
. , ; S systems, the size-evolutionary patterns of their ground-state
The prominence of the fine structure is not limited to the ; . " . .
. . . roperties are substantially different. Underlying the differ-
case of sodium clusters, but applies to other simple metals &s

well. As a further example, Fig. 10 displays the second en_ent behaviors of these two systems are the relatively high

) . -~ “surface and curvature LDM coefficients tie compared to
ergy differences for the case of singly charged pOtassmnﬂwose of Na cluster&for *He clusters, these coefficients are
clusters, K;. Again our theoretical predictiotisolid line) '

. . 7 8.42 K and 4.09 K, respectively; for sodium they %0541
agrees remarkably well with the experimental restfté and 0.154 eV, respectively
To provide guiding measures reflecting the different
weight of these coefficients in the two systems, we compare
T ' ' them against the volume-energy coefficient and the energy
spacing between major shells of the average oscillator poten-
tial, namely we calculate the ratiog);=ad/|a,| and
0p= ad (hwoN'?) [see Eq(12)].
a,=—2.49 K for *He and—2.252 eV for sodium, and
thusqg,=3.38 and 0.24, respectively, yielding a relative ratio
a,(*He)/q,(Na)=14.
For Na, the effective mass* is equal to the bare elec-
tron massm, and the unit radiug, corresponds to the
i Wigner—Seitz radiug ;=4.0 a.u.; note that unlike, for
®He, clusters which depends oN [see Eq.(13)], the ry
value for Ng, clusters is a constaft.As a result, one finds
q,(°*He)=3.47 (assumingr,=2.44 R), q,(Na)=0.18, and a
-06 — 1L relative ratiog,(*He)/q,(Na)=19.3. Thus the weight of the
Y 0 20 30 40 surface energy compared to the weight of the shell correction
N is 20 times more important itHe than it is in the case of Na
clusters. This relatively much higher surface energy yields
FIG. 9. Second energy difference;E, for singly charged, cationic Na g pstantially less deforméie clusters, and is the reason for
clusters. Solid line: Theoretical results derived from the SE-SCM methods . . . ’
with triaxial deformations. Open squares: Experimental results extractedn€ different size-evolutionary patterns betwékie and Na
from Ref. 16. Energies in units of eV. microclusters, evaluated in this study.

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded-04-Feb-2004-t0-130.207.165.29.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



8740 C. Yannouleas and U. Landman: Fermion microsystems

ACKNOWLEDGMENTS shell correction method_.DA-SCM) for metal clusters using the jellium
. . approximation in connection with an extended Thomas—Fe&TiF)
This research is supported by the U.S. Department of | pa input density to a Harris-like functional, see Ref. 7. This LDA-SCM
Energy (Grant No. FG05-86ER-45234Studies were per-  has been applied to multiply anionic metal clustéRef. 7) and to multi-

formed at the Georgia Institute of Technology Center for ply charged fullerene¢C. Yannouleas and U. Landman, Chem. Phys.

Computational Materials Science. Lett. 217, 175(1994]. .

P 20For an application of our SE-SCM to metal-cluster fission, see Ref. 10.
21|, S. Gradshteyn and I. M. RyzhiRable of Integrals, Series, and Prod-
1For reviews, seéa) C. Yannouleas and U. Landman, Rroceedings of ucts (Academic, New York, 1980 Chap. 8.11.

the NATO Advanced Study Institu@ourse on “Large Clusters of Atoms  22R. W. Hasse and W. D. Myer§eometrical Relationships of Macroscopic
and Molecules,” Erice, Italy, June 1995, NATO-ASI-Series E: Applied  Nuclear PhysicgSpringer, Berlin, 1988 Chap. 6.5.

Sciences, Vol. 313, edited by T. P. Martidluwer Academic, Dordrecht, ~ 23A recent Kohn—Sham-type density functional appro#gkf. 19 using
1996, p. 131;(b) articles inNuclear Aspects of Simple Metal Clusters  finite range interactions has found that abdve 168 the shell closures

edited by C. Brehignac and Ph. Cahuzac, Comments At. Mol. Pl3js. deviate from those of the harmonic oscillator scheme. As was the case of
(1995 Nos. 3-6;(c) Clusters of Atoms and Moleculezdited by H. Hab- metal cluster¢Ref. 8 in the framework of the SE-SCM these deviations
erland, Springer Series in Chemical Physics(Springer, Berlin, 1994 can be taken into account by addinglaperturbation to the Hamiltonian

(d) W. A. de Heer, Rev. Mod. Phy$5, 611(1993.

2W. D. Knight et al, Phys. Rev. Lett52, 2141(1984; K. L. Clemenger,
Phys. Rev. B32, 1359(1985.

3H. Nishioka, K. Hansen, and B. R. Mottelson, Phys. Rev4B 9377
(1990.

4C. Yannouleas, Chem. Phys. LetB3 587(1992; C. Yannouleas and R.
A. Broglia, Ann. Phys.(N.Y.) 217, 105 (1992; C. Yannouleas, E.
Vigezzi, and R. A. Broglia, Phys. Rev. 47, 9849(1993; C. Yannouleas,
F. Catara, and N. Van Giaibid. 51, 4569(1995.

SW. Ekardt, Phys. Rev. B1, 6360(1985; W. Ekardt and J. M. Pacheco,
ibid. 52, 16 864(1995.

SW. Ekardt, Phys. Rev. B9, 1558(1984.

7C. Yannouleas and U. Landman, Phys. Rev4® 8376 (1993; Chem.
Phys. Lett.210, 437(1993.

(10). Since, however, in this paper we carry out calculations for the
smaller, rather than the larger, sizes, we will continue our exposition by
strictly adopting the harmonic-oscillator magic numbers of Ref. 14. Apart
from a rearrangement of magic numbers above 168, our conclusions con-
cerning the contrasting behavior of size-evolutionary patterri$iefand
Na clusters will not be affected.

243, Stringari, in Ref. 12, p. 199.

5F, Castapn, M. Membrado, A. F. Pacheco, and J”8do, Phys. Rev. B
48, 12 097(1993.

263, R. Nix, Annu. Rev. Nucl. Part. S22, 65 (1972.

27R. K. Bhaduri and C. K. Ross, Phys. Rev. L&, 606 (1971).

28D, L. Hill and J. A. Wheeler, Phys. Re®9, 1102(1953.

2|ndeed for the ionization potentials, electron affinities, dimer separation

8C. Yannouleas and U. Landman, Phys. Re\6B 1902 (1995. energies, and fission energetics of sodium clust@sswell as potassium
°R. N. Barnett, U. Landman, and G. Rajagopal, Phys. Rev. B&{t3058 Soand copper cluste),s_,see Re_f. 8. . N ) 3
(1991); C. Brechignac, Ph. Cahuzac, F. Carlier, M. de Frutos, R. N. Bar- As was th? case with previous investigatiafef. 14, we find that'He
nett, and U. Landmaribid. 72, 1636(1994. cI:Jsters3 with 1&Ns3_0 are metastable, namely they+haﬁe>0 and
19C. Yannouleas and U. Landman, J. Phys. Che.14577(1995; C.  , # =0."He clusters wittN<14 are unstablég,>0 andp">0). _
Yannouleas, R. N. Barnett, and U. Landman, Comments At. Mol. Phys. Reference 16 has directly measured the monomer separation energies
31, 445 (1995. Diy (see Sec. Il ¢ for N=3. To extract the oscillatory parhEf
LA, Bohr and B. R. Mottelsor\luclear StructuréBenjamin, Reading, MA, of the total energy, we use the relation-3i3Dy;=E7(N)
1975, Vol. II. —E7(2)—(N—2)E{(1) (the constant term and the term proportional to
1250e articles by J. P. Toennies, K. B. Whaley, and S. Stringarf;hie N in the right-hand-side are liquid-drop-type contributions and do not
Chemical Physics of Atomic and Molecular Clusters, Proceedings of the contribute to the oscillatory partThe experimental value for the mono-
International School of Physics “Enrico Fermi,” 198&dited by G. mer separation energy fof=10, which was not provided in Ref. 16, was
Scoles(North-Holland, Amsterdam, 1990 specified with the help of the relatiotRef. 16, D{ ;;— D3 1,=0.75
184, Haberland, in Ref. (t), Vol. I, p. 374. eV—D{"10 WhereD;N denotes the dimer separation energies.
143, Stringari and J. Treiner, J. Chem. Ph§%, 5021(1987. 32The second energy differences are immediately calculated from the ex-
153, Weisgerber and P.-G. Reinhard, Z. Phy23 275 (1992. perimental monomer separation energies listed in Refs. 16 and 17 by
16C. Brechignac, Ph. Cahuzac, J. Leygnier, and J. Weiner, J. Chem. Phys. taking the difference®; y—D{ 1.
90, 1492(1989. 33The N dependence of the unit radius accounts for the fact that, within the
17C. Brechignac, Ph. Cahuzac, F. Carlier, M. de Frutos, and J. Leygnier, J. range 6sN<60, the smallePHey clusters(e.g., those wittN<20 in Fig.
Chem. Phys93, 7449(1990. 1) are associated with an average valuggafmaller than the correspond-
18y, M. Strutinsky, Nucl. Phys. 295, 420(1967); 122, 1 (1968. ing value for larger clusters. The constancy rqfin the case of Na
19For a microscopic local-density-approximatinDA) foundation of the clusters yields the opposite trend, as can be seen from Fig. 2.

J. Chem. Phys., Vol. 105, No. 19, 15 November 1996

Downloaded-04-Feb-2004-t0-130.207.165.29.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



