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A semiempirical shell-correction method including ellipsoidal deformations is used to determine
binding energies of open-shell, unpolarized3HeN clusters. Shell effects, shapes, and other
ground-state properties~like the chemical potential! are determined.3HeN clusters are found to be
substantially less deformed due to their relatively high surface energy as compared to that of
alkali-metal clusters~e.g., sodium clusters!. As a result, the size-evolutionary patterns associated
with 3HeN clusters are significantly different than the corresponding ones for NaN clusters. In
particular, odd–even oscillations and signatures of subshell closures are absent in the case of3HeN
clusters, while they are prominent in the case of alkali-metal clusters. ©1996 American Institute
of Physics.@S0021-9606~96!01343-8#

I. INTRODUCTION

The physics of condensed matter aggregates, such as
metal clusters,1 comprising fermionic particles has been the
subject of intensifying research efforts over the past decade.
In this context, analogies and methods drawn from nuclear
physics proved1–10 to be instrumental in advancing our un-
derstanding of optical excitations,1,4,5 ground-state
properties,1–3,6–8 and fission modes1,9,10 of such finite-size
systems. In particular, it has been established that a dominant
factor controlling the ground-state properties and shapes of
disparate finite fermion systems~such as nuclei and simple-
metal clusters, whose nature of bonding and cohesion are of
very different origins with widely differing characteristic en-
ergetic and spatial scales! are the shell effects resulting from
level degeneracies in conjunction with the Pauli principle
~e.g., for nuclei see Ref. 11; for simple metal clusters see
Ref. 8!.

Among rare-gas clusters, helium clusters are unique,
since they remain liquid at very low temperatures due to the
importance of zero-point motion relative to the weak
helium–helium interaction.12 Thus, in contrast to heavier
noble-gas clusters,13 where geometrical packing of the atoms
controls the stability properties of the ground state, helium
atoms remain delocalized within the volume of the cluster,
being confined by an average mean-field potential well.14 In
particular, since3He obeys fermion statistics,3HeN clusters
may be expected to exhibit certain analogies with atomic
nuclei. Indeed, such analogies, pertaining to the short-range
character of both the helium–helium and nucleon–nucleon
interactions, have motivated the development of theoretical
Kohn–Sham-type~KS! density functional approaches to in-
vestigations of3He clusters.14,15

Such density functional approaches have yielded a
wealth of information about some properties of3HeN clus-
ters, such as density profiles, compressibility, stability, magic
numbers, and shell effects of spherical closed-shell clusters.
The deformations of open-shell3HeN clusters, however, have
not been included as yet in such treatments.

The aim of the present paper is to calculate the shell

effects in3HeN open-shell clusters in conjunction with their
equilibrium deformed shapes~the influence of deformation
needs to be accounted for, since it is well known that the
ground state of both open-shell nuclei11 and metallic
clusters8 does not preserve spherical symmetry!. To this end,
we will use a semiempirical shell-correction method~SE-
SCM!, which accounts for ellipsoidal~triaxial! deformations.
This method was introduced8 by us earlier in the context of
studies of metal clusters, where it provided a successful in-
terpretation of experimentally observed systematic size-
evolutionary patterns of ground-state properties, such as ion-
ization potentials, electron affinities, monomer and dimer
separation energies, and fission energetics. Furthermore, we
present here additional direct comparison of the oscillating
part ~or shell part! in the total energy of alkali-metal clusters,
as well as of the second energy differences, with results ex-
tracted from experimental measurements.16,17

II. OUTLINE OF SEMIEMPIRICAL
SHELL-CORRECTION METHOD

According to the SE-SCM, the total energy of the cluster
ET ~usually also denoted7,8 asEsh to emphasize the fact that
shell corrections have been included! is given as the sum of
two terms, a liquid-drop-type smooth contributionELD ~or
Ẽ!, and a Strutinsky-type18 shell correctionDEsh

Str, namely,

ET5ELD1DEsh
Str. ~1!

The general background19 and formulation of this
method for the case of neutral and charged simple-metal
clusters20 has been described in Refs. 8 and 1~a!. Here we
limit ourselves to a discussion of the particular features as-
sociated with each energy term which need to be considered
in order to adapt the SE-SCM to the case of neutral3He
clusters.
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A. Liquid-drop model for deformed 3HeN clusters

For neutral clusters, the liquid-drop model8 ~LDM ! ex-
presses thesmoothpart,ELD , of the total energy as the sum
of three contributions, namely a volume, a surface, and a
curvature term, i.e.,

ELD5Evol1Esurf1Ecurv

5AvE dt1sE dS1AcE dSk, ~2!

wheredt is the volume element anddS is the surface dif-
ferential element. The local curvaturek is defined by the
expressionk50.5~Rmax

21 1Rmin
21 !, whereRmax andRmin are the

two principal radii of curvature at a local point on the surface
of the droplet which models the cluster. In the case of3HeN
clusters, the corresponding coefficients have been deter-
mined by fitting14 the total energy from KS-type calculations
for closed-shell, magic spherical clusters~i.e., forN520, 40,
70, 112, 168, 240, and 330, which happen to be the magic
numbers corresponding to an isotropic harmonic-oscillator
central potential! to the following parametrized expression as
a function of the number,N, of atoms in the cluster,

ELD
sph5avN1asN

2/31acN
1/31a0 . ~3!

The following expressions relate the coefficientsAv , s, and
Ac to the corresponding coefficients~a’s! in Eq. ~3!,

Av5
3

4pr 0
3 av ; s5

1

4pr 0
2 as ; Ac5

1

4pr 0
ac . ~4!

In Ref. 14, the values of these coefficients were determined
to be av522.49 K, as58.42 K, ac54.09 K, and a0
5219.8 K.

In the case of ellipsoidal shapes the areal integral and the
integrated curvature can be expressed in closed analytical
form with the help of the incomplete elliptic integrals
F ~c,k! and E~c,k! of the first and second kind,21 respec-
tively. Before writing the formulas, we need to introduce
some notations. Volume conservation must be employed,
namely,

a8b8c8/R0
35abc51, ~5!

whereR0 is the radius of a sphere with the same volume, and
a5a8/R0 , etc., are the dimensionless semiaxes. The eccen-
tricities are defined through the dimensionless semiaxes as
follows:

e1
2512~c/a!2,

e2
2512~b/a!2, ~6!

e3
2512~c/b!2,

and the semiaxes are chosen so that

a>b>c. ~7!

With the notation sinc5e1, k25e2/e1 , andk35e3/e1 ,
the relative~with respect to the spherical shape! surface and
curvature energies are given22 by

Esurf
ell

Esurf
sph5

ab

2 F12e1
2

e1
F ~c,k3!1e1E~c,k3!1c3G ~8!

and

Ecurv
ell

Ecurv
sph 5

bc

2a H 11
a3

e1
@~12e1

2!F ~c,k2!1e1
2
E~c,k2!#J .

~9!

B. The model external potential

Since the magic numbers of3HeN clusters correspond to
major closures of anisotropic harmonic oscillator,14,23 a
natural choice for the external model potential to be used for
calculating shell corrections in the SE-SCM is ananisotropic
three-dimensional oscillator

H052
\2

2m*
D1

m*

2
~v1

2x21v2
2y21v3

2z2!. ~10!

The oscillator frequencies can be related to the principal
semiaxesa8, b8, and c8 @see Eq. ~5!# via the volume-
conservation constraint and the requirement that the surface
of the cluster is an equipotential one, namely,

v1a85v2b85v3c85v0R0 , ~11!

where the frequencyv0 for the spherical shape~with radius
R0! was taken according to Ref. 24 to be

\v0~N!5
\2

m* r 0
2

5

4
31/3N21/35

14.46

r 0
2 N21/3 K Å 2, ~12!

whereR05r 0N
1/3. The effective mass is twice the bare3He

mass,24 i.e.,m*52m. The unit radiusr 0 is a slowly varying
function25 of N, namely,

r 0~N!52.44112.66N22/320.23N21/3 Å. ~13!

C. Shell correction and averaging of single-particle
spectra

The single-particle energiesei of the anisotropic har-
monic Hamiltonian~10! are used to obtain the semiempirical
Strutinsky shell correction,DEsh

Str, which is defined as fol-
lows:

DEsh
Str5(

i

occ

e i2Ẽsp, ~14!

where

Ẽsp5(
i

e i f̃ i ~15!

is the Strutinsky average of the single-particle spectrum with
f̃ i being appropriate weighting factors.

Usually Ẽsp is calculated numerically.26 However, a
variation of the numerical Strutinsky averaging method con-
sists in using the semiclassical partition function and in ex-
panding it in powers of\2. With this method, for the case of
an anisotropic, fully triaxial oscillator, one finds11,27 an ana-
lytical result, namely,
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Ẽsp
osc5\~v1v2v3!

1/3

3S 14 ~3N!4/31
1

24

v1
21v2

21v3
2

~v1v2v3!
2/3 ~3N!2/3D , ~16!

whereN denotes the number of3He atoms in the cluster.
In the present work, expression~16! ~as modified below!

will be substituted for the average partẼsp in Eq. ~14!, while
the sum( i

occe i will be calculated numerically by specifying
the occupied single-particle states of the oscillator repre-
sented by the Hamiltonian~10!.

In the case of an isotropic oscillator, not only the smooth
contribution, Ẽsp

osc, but also the Strutinsky shell correction
~14! can be specified analytically,11 with the result

DEsh,0
Str ~x!5 1

24 \v0~3N!2/3@21112x~12x!#, ~17!

wherex is the fractional filling of the highest partially filled
harmonic oscillator shell. We see that for a filled shell
~magic clusters havingx50!, DEsh,0

Str ~0!52 1
24\v0(3N)

2/3, in-
stead of an expected vanishing value. The vanishing of the
shell correction for magic~spherical! clusters originates from
the fact thatELD

sph @see Eq.~3!# has been fitted to total energies
for these clusters obtained from KS-type calculations14 @see
discussion in the context of Eq.~3!#. To adjust for this dis-
crepancy, we add2DEsh,0

Str ~0! to DEsh
Str calculated through

Eq. ~14! for the case of open-shell, as well as closed-shell
clusters.

III. RESULTS

A. Cluster shapes

In this subsection, we present systematics of the3HeN
and NaN equilibrium triaxial shapes in the rangeN<60. A
most economical way for such a presentation is through the
use of the Hill–Wheeler parameters28 b and g, which are
related to the dimensionless semiaxesa, b, andc @see Eq.
~5!# as follows:

a5expFA5/~4p!b cosS g2
2p

3 D G ,
b5expFA5/~4p!b cosS g1

2p

3 D G , ~18!

c5exp@A5/~4p!b cosg#,

whereb is unrestricted and 0<g<p/3. A valuegÞ0 indi-
cates a triaxial shape, whileg50 corresponds to a prolate
shape, andg5p/3 denotes an oblate deformation. The pa-
rameterb provides a measure of the magnitude of the defor-
mation ~the origin, i.e.,b50, corresponds to a spherical
shape!.

Using the above definitions, the cluster potential energy
surfaces~PES’s! in deformation space may be easily mapped
and studied. In this manner, one can analyze the topography
of the PES’s and identify the global minimum for each size
N. The global minima are plotted in Figs. 1 and 2 for the
case of3He and neutral Na clusters, respectively.

We observe that although theg parameter can take all
possible values between 0 andp/3 in the case of3He clus-
ters, theb parameter exhibits values noticeably smaller than
corresponding values for Na clusters. As a result, the shapes
of 3HeN clusters are much less deformed than the shapes of
NaN clusters. Whether these differences in equilibrium
shapes will result in marked differences in various size-
evolutionary patterns, however, needs to the explicitly dem-
onstrated through a comparison of ground-state quantities.
This is done below.

FIG. 1. The Hill–Wheeler parameters specifying the equilibrium shapes
~corresponding to the global minima of the PES’s! of 3HeN clusters accord-
ing to the ellipsoidal model in the range 6<N<60. Observe that the dashed
circle corresponds to a value ofb50.10, compared to a much larger value of
b50.70 for Na clusters~see Fig. 2!.

FIG. 2. The Hill–Wheeler parameters specifying the equilibrium shapes
~corresponding to the global minima of the PES’s! of neutral NaN clusters
according to the ellipsoidal model in the range 3<N<60.
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B. Oscillatory contribution to total energies

Figures 3 and 4 display the oscillatory part of the total
energies corresponding to global minima in the PES’s~bot-

tom panels! as a function ofN for 3He and neutral Na clus-
ters, respectively. To provide a detailed study of this contri-
bution, three different quantities~renormalized to the liquid
drop contribution of the corresponding spherical shape! are
plotted, namely, the shell correction proper,DEsh

Str ~solid
curve!, the renormalized total energy at the global minimum
~b,g!, DET(b,g)5ET2ELD~b50! ~dashed-dotted curve!,
and their normalized total energy associated with corre-
sponding spherical shapes, i.e.,DET~b50!5ET(b50)
2ELD~b50!5DEsh

Str~b50! ~dashed curve!. Naturally,
DET~b,g! does not coincide withDEsh

Str ~the shell correction
proper!, since it also contains the liquid drop contribution
due to deformation, i.e.,DET(b,g)5DEsh

Str1ELD~b,g!
2ELD~b50!. The following observations can be immedi-
ately made: The increase of the energy due to the liquid drop
contribution arising from deformation @namely,
ELD~b,g!2ELD~b50!, which is given by the difference be-
tween the dashed-dotted and the solid curves# is more impor-
tant in3He clusters than in Na clusters. This is a consequence
of the fact that the surface and curvature coefficients~as and
ac! in the case of

3He clusters are, in relative terms, substan-
tially larger than the corresponding coefficients or Na clus-
ters~see also Sec. IV!. The shell-correction curve,DEsh

Str, for
sodium clusters is much ‘‘flatter’’ between magic numbers
and exhibits significant fine structure. This fine structure and
overall behavior are portrayed almost unaltered in the total
energy curve,DET , which consequently has a profile that is
substantially different from the total energy curve for spheri-
cal shapes. On the other hand,3He clusters exhibit a shell-
correction-proper curve with very little structure between
major shells. When the liquid drop contribution is added, the
total energy curve is practically devoid of any fine structure
and, apart from an overall scaling, it closely resembles the
total energy curve for spherical shapes. This behavior of
DET suggests that the per particle ground-state properties
~like IPs, EAs, chemical potential, etc.! will exhibit rich fine
structure in their size-evolutionary patterns in the case of
sodium,29 while, for 3He clusters, apart from major-shell fea-
tures, they will be rather monotonic~see indeed the next
subsection!. The net stabilization energy due to the deforma-
tion @which is the gain in energy with respect to the renor-
malized total energy of the corresponding spherical shapes,
namely, DET(b50)2DET(b,g)# is remarkably larger in
the case of Na clusters than in the case of3He clusters. To
better quantify this observation, we display at the top panels
of Figs. 3 and 4 the gain factors

g5@DET~b50!2DET~b,g!#/DET~b50!. ~19!

We observe that, in the plotted size range, the gain factor in
the middle of open shells remains most often larger than 0.5
for sodium clusters, but less than 0.35 for3He clusters. In
particular, for the smaller clusters in the rangeN<70, this
factor can acquire values up to 0.70 for Na clusters, but
barely up to 0.20 for3He clusters.30

Since no relevant experimental information exists at
present for3He clusters, we restrict ourselves to confront our
theoretical results forDET

1~b,g! for singly charged sodium
clusters, NaN

1, to corresponding available experimental

FIG. 3. Bottom panel: Theoretical SE-SCM oscillatory contributions to the
total energies of triaxially deformed3HeN clusters in the range 6<N<250.
Solid line: The Strutinsky shell correction proper. Dashed-dotted line
~middle line!: Renormalized total energy. Dashed line: Renormalized total
energy associated with corresponding spherical shapes~see the first para-
graph of Sec. III B for details!. Top panel: The gain factorsg defined by Eq.
~19!. Shell closures occur atN58, 20, 40, 70, 112, 168, and 240. Energies
in units of degrees K.

FIG. 4. Bottom panel: Theoretical SE-SCM oscillatory contributions to the
total energies of triaxially deformed neutral NaN clusters in the range
2<N<250. Solid line: The Strutinsky shell correction proper. Dashed–
dotted line~middle line!: Renormalized total energy. Dashed line: Renor-
malized total energy associated with corresponding spherical shapes~see the
first paragraph of Sec. III B for details!. Top panel: The gain factorsg
defined by Eq.~19!. Shell closures occur atN52, 8, 20, 40, 58, 92, 138,
186, and 254. Energies in units of eV.
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results.16 This comparison is carried out in Fig. 5, where the
solid line represents our theoretical calculations and the open
squares denote the experimental values.31 The agreement be-
tween theory and experiment is remarkable, since both the
experimental absolute values and fine structure~odd–even
alternations and their modulations! are very well reproduced
by the theory. It is worth noticing that the strong attenuation
of the odd–even alternation in the rangeN516–19 which is
prominent in the experimental results is also extremely well
reproduced by the theory.

C. Chemical potential of 3He clusters and monomer
separation energies of Na clusters

Figure 6 displays the size evolution of the chemical po-
tential,m15ET(N11)2ET(N) ~solid line!, of 3He clusters,
along with the liquid drop contribution~dashed line!. Apart
from the prominent features at major-shell closures, the fine
structure in-between is practically insignificant.

In contrast, the monomer separation energies,
D1,N

1 5ET
1(N21)2ET

1(N)1ET(1), associated with the pro-
cess NaN

1→NaN21
1 1Na in the case of singly charged clusters

exhibit a rich fine structure between major-shell closures.
This can be seen in Fig. 7~a! where the theoretical results are
confronted with experimental measurements.16 In addition to
features associated with major-shell closures~i.e., for N59
and 21!, odd–even oscillations and subshell closures at
N515, 27, 31, and 35 are prominent. The agreement be-
tween theory and experiment is highly satisfactory.

Figure 7~b! displays the theoreticalD1,N
1 calculated un-

der the restriction of spherical shapes. In this case, the dis-
agreement with the experimental data is substantial. This il-
lustrates further the importance of including deformations in
the theoretical description of fermionic clusters before arriv-
ing at final conclusions relating to their properties@see also
Refs. 8 and 1~a!#.

D. Second energy differences

Another quantity which reflects shell effects in fermion
microsystems is the second energy differenceD2E
5ET(N11)1ET(N21)22ET(N). For the case of3He
clusters, this quantity is displayed in Fig. 8. Again, as was
the case with the chemical potential, only the features at
major-shell closures are important.

The second energy differences for the case of singly
charged NaN

1 clusters are displayed in Fig. 9~solid line! and
compared to experimental results~open squares! extracted32

form the measurements of Ref. 16. In contrast to3He clus-

FIG. 5. Renormalized total energies~oscillatory part!, DET5ET

2ELD~b50!, of small singly charged, cationic NaN
1 clusters. Solid line:

Theoretical results from the SE-SCM method with triaxial deformations.
Open squares: Experimental results extracted from Ref. 16. Energies in units
of eV.

FIG. 6. Theoretical results for the chemical potential,2m1, of 3HeN clus-
ters. Solid line: SE-SCM results with triaxial deformations. Dashed line:
Liquid drop results for corresponding spherical shapes. Energies in units of
degrees K.

FIG. 7. Monomer separation energies,D1,N
1 , for singly charged, cationic

NaN
1 clusters in the range 5<N<39. ~a! Solid dots: Theoretical results de-

rived from the SE-SCM method with triaxial deformations. Open squares:
Experimental measurements from Ref. 16.~b! Solid dots: Theoretical results
derived from the SE-SCM method assuming spherical shapes. Open
squares: Experimental measurements from Ref. 16. Energies in units of eV.
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ters, the importance of fine structure between magic numbers
is immediately noticeable. The agreement between theory
and experiment is again impressive. In particular, with re-
gard to the fine structure between magic numbers, all the
odd–even alternations and their modulations~i.e., the attenu-
ation in the rangeN516–19 or the enhancements at the sub-
shell closuresN515, 27, 31, and 35! apparent in the experi-
mental results are very well reproduced by the theory.

The prominence of the fine structure is not limited to the
case of sodium clusters, but applies to other simple metals as
well. As a further example, Fig. 10 displays the second en-
ergy differences for the case of singly charged potassium
clusters, KN

1. Again our theoretical prediction~solid line!
agrees remarkably well with the experimental results17,32

~open squares!. Notice that the reduction~compared to Na! in
the absolute values portrayed by the experimental values is
well reproduced by the theory.

IV. DISCUSSION AND CONCLUSIONS

Although both3He and Na clusters are fermionic micro-
systems, the size-evolutionary patterns of their ground-state
properties are substantially different. Underlying the differ-
ent behaviors of these two systems are the relatively high
surface and curvature LDM coefficients of3He compared to
those of Na clusters~for 3He clusters, these coefficients are
8.42 K and 4.09 K, respectively; for sodium they are8 0.541
and 0.154 eV, respectively!.

To provide guiding measures reflecting the different
weight of these coefficients in the two systems, we compare
them against the volume-energy coefficient and the energy
spacing between major shells of the average oscillator poten-
tial, namely we calculate the ratios,q15as/uavu and
q25as/(\v0N

1/3) @see Eq.~12!#.
av522.49 K for 3He and22.252 eV for sodium, and

thusq153.38 and 0.24, respectively, yielding a relative ratio
q1~

3He!/q1~Na!514.
For Na, the effective massm* is equal to the bare elec-

tron massme and the unit radiusr 0 corresponds to the
Wigner–Seitz radiusr s54.0 a.u.; note that unliker 0 for
3HeN clusters which depends onN @see Eq.~13!#, the r s
value for NaN clusters is a constant.33 As a result, one finds
q2~

3He!53.47 ~assumingr 052.44 Å!, q2~Na!50.18, and a
relative ratioq2~

3He!/q2~Na!519.3. Thus the weight of the
surface energy compared to the weight of the shell correction
is 20 times more important in3He than it is in the case of Na
clusters. This relatively much higher surface energy yields
substantially less deformed3He clusters, and is the reason for
the different size-evolutionary patterns between3He and Na
microclusters, evaluated in this study.

FIG. 8. Theoretical second energy differences,D2E, for
3HeN clusters de-

rived from the SE-SCM method with triaxial deformations. Energies in units
of degrees K.

FIG. 9. Second energy differences,D2E, for singly charged, cationic NaN
1

clusters. Solid line: Theoretical results derived from the SE-SCM method
with triaxial deformations. Open squares: Experimental results extracted
from Ref. 16. Energies in units of eV.

FIG. 10. Second energy differences,D2E, for singly charged, cationic po-
tassium, KN

1, clusters. Solid line: Theoretical results derived from the SE-
SCM method with triaxial deformations. Open squares: Experimental results
extracted from Ref. 17. Energies in units of eV.
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