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Abstract 

Electronic structure calculations using the local density functional method with non-local norm-conserving pseudopoten- 
tials, ab initio molecular dynamics simulations, and a novel method of all-quantum simulations, combining a quantum 
path-integral description of the nuclear degrees of freedom with concurrent electronic structure calculations of the 
Born-Oppenheimer potential energy surface, were employed in investigations of the structure and dynamics of protonated 
water clusters. Using electronic structure, structural optimization and all-quantum simulations, structures and energetics of 
H3 O+, (H20)2 H+, as well as NH +, (NH3)2 H+, and the mixed (NH3)(H20)H + cluster, are described and analyzed. The 
quantum nature of the hydrogens in the protonated water clusters, as well as a measure of the tunneling enhancement of the 
inversion isomerization in H3 O+ at 150 K, are demonstrated and discussed. 

1. Introduct ion  

The most commonly used form of molecular dy- 
namics (MD) simulations (see the collection of arti- 
cles in Ref. [1]) involves numerical integration of  the 
classical equations of  motion of  many-particle sys- 
tems, with prescribed model inter-particle interaction 
potentials. Such classical and quantum-classical (see 
the review in Ref. [2]) simulations, while useful, are 
restricted by the inherent limitations of  the interac- 
tion potentials, particularly under conditions which 
are outside the range of  validity of  the data-base 
used for parameterization or fitting of  the potentials, 
and in circumstances involving electronic rearrange- 
ments. The introduction of  'ab initio' MD schemes 
where the classical dynamics of  the ions evolves on 
the concurrently [3,4] (see also the reviews in Refs. 
[5,6]), quantum-mechanically calculated ground-state 
Born-Oppenheimer  (BO) potential energy surface, 
alleviate certain of  the aforementioned limitations. 

In certain cases, as in systems containing light 

nuclei (particularly protons), considerations of the 
quantum mechanical nature of  the nuclear degrees of  
freedom are important. To this end, simulation meth- 
ods based on the path-integral (PI) formulation of  
quantum statistical mechanics [7] have been em- 
ployed (see reviews in Refs. [8-12]) using model 
interaction potentials. 

In this Letter we present an all-quantum molecu- 
lar dynamics simulation method (AQMD), unifying 
the methodology of  the BO local-density-functional 
MD (BO-LDA-MD) method [4] with the quantum PI 
description of  the nuclear degrees of freedom. The 
new method offers new ways for investigating physi- 
cal and chemical issues in molecular and condensed 
matter systems, particularly in systems involving 
light species, such as proton transfer processes, hy- 
drogen bonding, tunneling, molecular liquids, ice, 
compressed hydrogen, quantum liquids, and clusters. 
Following a brief description of  the new theoretical 
simulation method in Section 2, we give in Section 3 
results pertaining to the energetics and structures of  
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protonated water and ammonia clusters. In Section 4 
we apply the AQMD method to studies of the hydro- 
nium ion (H3 O+) and the protonated water dimer 
(H20)2 H÷. We summarize our results in Section 5. 

2. Method 

The all-quantum simulation method combines the 
BO-LDA-MD method with the PI one. We give here 
a brief description (for details see Ref. [4]), followed 
by presentation of the new AQMD method. 

2.1. The Born-Oppenheimer local-density-functional 
molecular dynamics (BO-LDA-MD) method 

In simulations of the classical dynamics of ions 
on the ground-state BO electronic potential-energy 
surface, the dynamical evolution is generated via 
integration of the Newtonian equations of motion, 

V,~, = -Vr ,  ee , ({ r} )  - Vr, E Z, Zj 
l>J I r , - -rs  I '  (1) 

where r I denotes the vector position of the Ith ion of 
charge ZI, the second term on the right is the force 
on the ion due to the interionic Coulomb repulsion, 
and the first term is the force on the Ith ion due to 
its interaction with the ground state electronic den- 
sity ({r} denotes collectively the coordinates of all 
the ions in the system). Evaluation of the electronic 
force, via the Hellman-Feynman theorem [13], re- 
quires an efficient and accurate method for calculat- 
ing the electronic energy Eelec for any ionic configu- 
ration, {rl}. 

In our calculations 

Eelec = T e + Eel + Eee , (2 )  

where T, is the kinetic energy of the electrons, Eci is 
the electron-ion interaction energy and Eee is the 
electron-electron interaction energy, is evaluated af- 
ter each classical molecular dynamics integration 
step (i.e. solution of Eq. (1) for the ionic coordi- 
nates), with the use of the local-density-functional 
(LDA), or the local-spin-density functional (LSD), 
method, and employing a plane-wave basis and non- 
local norm-conserving pseudopotentials [14]. We re- 
mark that in the simulations presented below we 

used the local exchange-correlation (xc) functional 
[15], while in our optimization of the structures of 
the clusters we used generalized gradient corrections 
(GGC) where the exchange [16] and correlation [17] 
gradient corrections (xcg) are included in a self-con- 
sistent manner. We emphasize that while in our 
dual-space method we use plane-wave basis sets for 
finite systems, we do not employ a supercell proce- 
dure, i.e. there are no periodically repeated images of 
the system [4]. This has the advantage that it enables 
us to treat accurately finite systems which are charged 
or have large multipole moments as well as fragmen- 
tation and reaction processes in molecular and clus- 
ter systems. 

Since in our method the electronic energy and 
forces on the nuclei are calculated during a dynami- 
cal simulation for each successive nuclear configura- 
tion, we are assured to remain on the ground-state 
BO surface throughout the evolution of the system, 
thus allowing a relatively large time step, At, in the 
integration of the classical nuclear equations of mo- 
tion (determined by the highest characteristic vibra- 
tional frequencies in the system; thus, in simulations 
of water systems we used At = 0.8 fs, with a Gear 
fifth-order predictor-corrector algorithm, conserving 
energy to = 10-4% of the total energy). 

2.2. All-quantum simulations: the AQMD method 

In all the above-mentioned simulations the nuclei 
were restricted to behave classically. For systems 
containing light nuclei, where considerations of the 
quantum mechanical nature of the nuclear degrees of 
freedom are of importance, simulation methods based 
on the path-integral (PI) formulation of quantum 
statistical mechanics [7] have been developed [8-12]. 

According to the Feynman path-integral formula- 
tion of quantum statistical mechanics, the partition 
function 

Z = Tr(e -~H) (3) 

(where / 3 - - 1 / k a T ,  and Tr denotes a trace) for a 
system of N interacting distinguishable particles with 
the Hamiltonian H given by 

U _ h  2 
O -~- E 7 V i  2 + g ( rm ,  r 2 , - - . ,  rN) ,  (4)  

i=~-1 2mi  
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may be written as 

Z =  lim Zp, (5)  p---~ ~ 

where 

Zp = I - [  dr} ") l-I 1-I E(r} "), r i 1); 
i=1 ot=l i=1 a = l  (" ) Xexp - a  Y'~ V(r~ =) . . . . .  g f ) )  . (6) 

ot=l 
In Eq. (6) e = / 3 / P ,  and 

E ( r }  ~), r} ~+ 1); , ) 
[ P  13/2 ( e 1))2 ) 

= / ~ / exp - ( r f )  - -('~+ ~ 2~ai ] -~ i  ri , 

(7) 
where the characteristic length h 2 = hZfl/mi is the 
thermal wavelength (or uncertainty spreading) of a 
free particle of mass m~. 

In this description each quantum particle maps 
onto an isomorphic 'ring polymer' (or cyclic 'neck- 
lace'), consisting of P pseudo-particles (or 'beads' ;  
in general we could have assigned to each particle a 
different number of beads), held together by har- 
monic springs. We note that in the limit of large 
mass m i each of the factors E(r} "), r} a+i)) ap- 
proaches 6(r}'~) -- r} "+1)) and the corresponding 
necklace 'collapses' to a single point in space, r i. 
This is the classical limit which can similarly be 
achieved for high temperature, i.e. small /3, with 
necklaces corresponding to particles of larger mass 
collapsing first. Since h 2= 48 fii 2 amu K/Tm, we 
note that for hydrogen AE(H, T) = 48 .~2 K / T  while 
for oxygen A2(O; T) = 3 ,~2 K/T.  Consequently, in 
a system consisting of oxygens and hydrogens, the 
oxygens may be assumed classical (i.e. single-bead 
necklaces, although as we will see below this does 
not bring a significant saving in computational time). 

Specializing to a system consisting of N n hydro- 
gen atoms (protons) and N o oxygens, Eq. (6) can be 
rewritten as 

Z P = 2 "rr A----~H 
Nn P No 

×IM E d, °'rI "= = j = l  
(8) 

with 

g p -  - -  
Pm H ~-~ NH 

2 ( h f l )  2 a=l~ i=lE ( r } a ) - - r } a + l ) )  2 

1 P 
+-ff ~, V(r~) ,  ...,r(~)" ri, , .,ruo ), (9) 

ot=l 

where m H is the proton mass, and rj, 1 ~<j ~<N o, are 
the positions of the oxygen atoms (taken as classical 
particles). 

The 'classical form' of the expression for the 
partition function in Eq. (8) is evident. However we 
iterate that in the limit of P ~ oo it yields (rigor- 
ously) the value for the quantum partition function. 

The quantum expectation value for any quantity 
A(r), where r denotes collectively the coordinates of 
all particles in the ' real '  physical system under con- 
sideration (hydrogens and oxygens in our case) is 
given in terms of averages over the canonical ensem- 
ble of a classical (isomorphic) system with a poten- 
tial Vp (Eq. (9)), 

( A )  = lim Ap 

= lim d r f  ) 
p~oo "~p = 

No 
X I - I  dr j  A ( r ]  ~) . . . . .  r(N~); r I . . . . .  rNo ) 

j = l  

Xexp( - /3Vp)] .  (10) 

The Boltzmann-weighted canonical averages in 
Eq. (10) may be evaluated via a Monte Carlo sam- 
pling of the configurational space of the isomorphic 
system, or (as in our simulations) through averaging 
over the phase-space trajectories generated in a MD 
simulation [18] via integration of the equations of 
motion obtained from the Hamiltonian for the iso- 
morphic system, 

NH P No 
He - -1  E E mH(/'}a)) 2+1 E m ; ( i ' i ) e + V P ,  

i=1 a= l  j = l  
(11) 

where m n and m o are auxiliary (fictitious) masses 
of the pseudo-particles (beads), chosen such as to 
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e n h a n c e  p roper  s a m p l i n g  of  the phas e - s pace  of  the 

i s o m o r p h i c  sys tem.  

The  potent ia l  V in Eq. (9)  is general .  All  PI 

s imu la t i ons  to date e m p l o y e d  for  V p resc r ibed  mode l  

in te rac t ion  potent ia ls ,  and  have  been  appl ied  wi th  

s ign i f i can t  success  to va r ious  s y s t em s  [ 7 - 1 1 , 1 9 - 2 3 ] .  

H o w e v e r ,  these  s imu la t i ons  share  s imi la r  l imi ta t ions ,  

pe r t a in ing  to the in te rac t ion  po ten t ia l s  emp loyed ,  as 

those  m e n t i o n e d  a b o v e  in the con tex t  o f  c lass ical  

s imula t ions .  On  the o the r  hand ,  in our  new al l -  

q u a n t u m  M D  ( A Q M D )  m e t h o d  the q u a n t u m  nature  

o f  the nucle i  is i nc luded  (v ia  the  pa th - in teg ra l  fo rmu-  

la t ion)  and  the ene rge t i c s  (o f  the  i s o m o r p h i c  sys t em)  

on  the se l f - cons i s t en t  B O  e lec t ron ic  po ten t ia l  ene rgy  

sur face  is concu r r en t l y  eva lua ted  (v ia  L D A  or LSD).  

W e  r e m a r k  in this  con tex t  that  wh i l e  the nucle i  are 

res t r ic ted  to s a m p l e  the ( e v o l v i n g )  B O  g r o u n d  state 

e l ec t ron ic  po ten t i a l  ene rgy  surface ,  they are free to 

the rma l ly  popu la t e  (wi th  canon ica l  e n s e m b l e  stat is t i -  

cal w e i g h t s )  exc i ted  (v ib ra t iona l - l ike )  s ta tes  of  the 

nuc lea r  deg rees  o f  f reedom•  

Fina l ly ,  we note  f rom Eq. (9)  that  wh i l e  the 

h a r m o n i c  te rm (first  t e rm on the r i gh t -hand  s ide)  

coup le s  consequ i t i ve  beads  ( a  and  a + 1) of  part-  

icle i, the in te rac t ion  po ten t ia l  V ( r ] ' ~ ) , . .  r ( ~ "  
• , N H , 

r~ . . . . .  rNo) i nvo lves  on ly  b e a d s  wi th  the  s ame  index 

c~ on  d i f fe rent  neck laces  (i.e. c o r r e s p o n d i n g  to dif-  

f e ren t  par t ic les) .  T h u s  in p e r f o r m i n g  an  ab init io 

B O - L S D - M D  s imula t ion  for  the i s o m o r p h i c  sys tem,  

one  needs  to eva lua te ,  at each  in teg ra t ion  step of  the 

( N e w t o n i a n )  equa t ions  o f  m o t i o n  for  the beads  (de- 

r ived f rom the H a m i l t o n i a n  in Eq. (11)) ,  the B o r n -  

O p p e n h e i m e r  g round-s t a t e  ene rg ies  for  P sets  of  

coord ina tes ;  (r~ j), . . . , .Nnr(1)', r l ,  . . . , rNo) , . . . , ( r~  P), 

• . . , r (P)'NI I , r I . . . .  . rNo).  C o n s e q u e n t l y ,  in such  all- 

q u a n t u m  s imula t ions ,  w h e r e  bo th  the e lec t rons  and  

nuclei  are t rea ted  q u a n t u m  m e c h a n i c a l l y ,  the c o m p u -  

ta t ional  effor t  is P - f o l d  mul t ip l i ed  in c o m p a r i s o n  to 

a s imula t ion  w h e r e  the nucle i  are t rea ted  c lass ica l ly  

( s ince  the d o m i n a n t  por t ion  o f  t ime  in the s imula t ion  

is spent  in so lv ing  the  e l ec t ron ic  s t ruc ture  for  g iven  

pos i t ions  o f  the h y d r o g e n  beads  ( and  o x y g e n  nuclei) .  

W e  add i t iona l ly  r e m a r k  that  the s t ruc ture  o f  the 

equa t ions  a l lows  for  s ign i f i can t  ga ins  in c o m p u t a -  

Table 1 
Energetics and structural information of protonated clusters A,,H +, n = 1, 2, for A = H 2 0 ,  NH 3 and (NH3XH20) 

A n k I A~ dBH + dBH ±(HBH) /-(BH + B) 

H ,O 1 LDA 7.361 (I.984 - 114.2 
GGC 7.519 
exp. 7.229 " 

NH 3 1 LDA 9.(165 1.019 - 109.47 
GGC 9.30 
exp. 8.871 b 

H, O 2 LDA 8.90 1.934 1.197 0.964 110.4 174.5 
GGC 8.955 1.549 
exp. (1.370 ~, 1.431 c 1.561 ") 

NH 3 2 GGC 10.452 1.233 1.307 1.014 107.5 180 
exp. (1.075 c 1.17 c, 1.10 c) 

(NHsXHeO) 1 GGC 9.936 0.877 a 1.561 ~ 0.961 c 107.2 e 177.9 f 
2.646 g 1.07 h 1.016 h 108.7 h 

exp. 0.863 ~.,I 
2.37 "g 

The binding energy of H + to A,  (i.e. the proton affinity of A,)  is given by AL = E[A,,] - E[A,,H+], and the solvation energy of AH + is 
given by A 2 = E[A,, i H +] + E[A] - E[A,,H+]. In the case of(NH3)(H20)H + results for A 2 are given for (NH3)(H20)H + ~ NH + + H20, 
and (NHjXH20)H+--~ H30++ NH 3. Energies are given for LDA calculations and for LDA calculations including exchange-correlation 
gradient corrections self-consistently (GCC), with plane-wave energy cutoff E c = 96 Ry. The structural results correspond to GGC 
calculations with E c = 96 Ry. The distances (dnH., dt~ H ) and an~les (±(HBH), /_(BH + B)) are given for the clusters, with B corresponding 
to the O or N nuclei, respectively. Energies in eV, distances in A, and angles in deg. 

Ref. [34]. b Ref. [31]. c For a compilation of data and references, see Ref. [35]. 
d (NH3){H20)H+__+NH~ + H 2 0  ' c B = O .  f ±(OH+N). g (NH3) (H20)H+~NH3+H30  +. h B = N .  



H. -P. Cheng et al. / Chemical Physics Letters 237 (1995) 161-170 165 

tional e f f ic iency  via  the use o f  paral lel  computa t ional  

architectures.  
In our  s imula t ions  o f  protonated water  and ammo-  

nia clusters we  have  emp loyed  no rm-conse rv ing  

non- loca l  pseudo-potent ia ls  [14] for the o x y g e n  and 

ni t rogen atoms (s and p components ,  wi th  s non- lo-  

cal i ty)  and a local  pseudo-potent ia l  for the hydro-  

gens.  In structural op t imiza t ion  p lane -wave  kinet ic  

energy  cutoffs,  E c, o f  96 and 158 Ry were  used. 

Both L D A  calcula t ions  and genera l ized-gradient  cor-  

rect ion ( G G C )  calcula t ions  were  performed.  In the 

B O - L D A - M D  and A Q M D  simulat ions  for H3 O+ 

and ( H 2 0 ) 2  H÷ at 150 K, the B O  potential  energy 

surfaces were  calculated via  L D A  with  E c = 96 Ry. 

In the path- integral  M D  the number  o f  pseudo-par-  

t icles P = 8, and an integrat ion t ime-s tep  o f  A t  = 0.8 

fs was  used. Statistical averages  were  obtained f rom 
s imulat ions  o f  up to 1.2 × 104 At.  

3. Proton solvation in small clusters: energetics 
and structures 

Protonated water  clusters (the hydron ium ion 

H3 O+,  and the hydrated hydron ium H3 O + .  n H 2 0 ,  
or  ( H 2 0 ) , H  ÷) are sys tems of  impor tance  in a num-  

ber  o f  areas o f  chemica l  and physical  research,  and 

have  been  the subject  o f  several  exper imenta l  and 

theoret ical  inves t igat ions  (see the rev iews  in Ref.  

[24]) [25-33] .  Whi l e  in this study we  focus  on small  

protonated water  clusters  ( a 3  O+ and HsO~-) ,  we  

compare  first their  energet ics  and structure to that o f  

NH~-, and to N2H ~ and the mixed  ( N H  3) ( H 2 0 ) H  + 
cluster  1 (see Table  1 and Fig. 1). 

Inspect ion o f  the energet ics  data displayed in 

Table  1 reveals  several  trends (based on G G C  re- 

sults). First,  f rom compar i son  of  the aff ini t ies (g iven  

by A 1 in Table  1) we  conc lude  that: 

(i) The  calculated proton affinity o f  the ammon ia  

1 In the mixed (H20)(NH3)H ÷ molecular ion (not shown in 
Fig. 1) the proton bond is nearly linear (i.e. /__(NH + O) = 177.9 °) 
with don + = 1.56 .~, and dNH+ = 1.07 .~ (reflecting the higher 
proton affinity of the ammonia molecule). The bonding proton lies 
on the symmetry axis of each of the bonded molecules. The plane 
of the water molecule is normal to the NH ÷ O plane, and one of 
the NH bonds of the ammonia molecule is in the NH + O plane. 

I /' 

Fig. 1. Left: optimized structures (at the GGC level, with a 
plane-wave cutoff energy of 96 Ry) for H3 O+ (C3v symmetry) 
and NH~- (tetrahedral); see Table 1. Small spheres correspond to 
hydrogens and large spheres to an oxygen or a nitrogen. For 
H3 O+ the distance of the oxygen from the plane of hydrogens 
h 0 =0.244 A and the angle between h o and the OH bond 
0 = 75.8 °. For comparison, the calculated distances in H20 and 
NH 3 are doll = 0.964 A and dNH = 1.01 A, respectively, and 
/_(HOH) = 104.7 ° and L_(HNH) = 107.2 °. Right: optimized struc- 
tures for (H20)2 H+ (C 2 symmetry) and (NH3)2 H+, calculated 
via LDA-GGC with E c = 96 Ry; see Table 1. For the (HaO)2H ÷ 
cluster doo = 2.39 A, /__(HIOH ÷ ) = 121.1 °, and /__(H2OH ÷ ) = 
119.7 ° (the hydrogen atoms H 1 and H 2 are denoted in the figure 
and the inter-molecular proton is denoted as Hs). Calculations for 
(H20)2 H÷ using LDA-GGC, with E c = 158 Ry yielded essen- 
tially the same structure with doll = 0.973 A. Shown also is a 
view along the O10 ~ axis, the angles ~1, ~2 between the projec- 
tions of the O1H 1 and OIH 2 bonds on a plane normal to the O102 
axis and the vertical line indicated in the figure, are 22.4 ° and 
56.3 °, respectively (t51 = 22.8 ° and ~2 = 56-3° for E c = 158 Ry). 
For the (NH3)2 H÷ molecular ion the two proton-bonded NH 3 
molecules are rotated by 60 ° with respect to each other about the 
NN axis. 

molecu le  is 22.7% larger than that o f  H 2 0  (in 
excel lent  agreement  wi th  the exper imenta l  va lue  [33] 

o f  23.1%). 

(ii) The  proton affinity o f  ( H 2 0 )  2 is 19% larger  

than for the H 2 0  monomer ,  and that o f  (NH3)  2 12% 

larger than that o f  N H  3 (see A 1 in Table  1). 

(iii) The  proton affinity o f  (NH3)  2 is larger than 

that o f  ( H 2 0 )  2 (by 16.7%) and the va lue  for 

( N H 3 ) ( H 2 0 )  is in termedia te  be tween  the two (larger 

by = 11% than that o f  (H20)2 ) .  
Compar i son  of  the solvat ion energies  ( A e in Table  

1) shows that: 

(i) The  hydrat ion energy of  the hydron ium ion 

(i.e. the b inding energy  of  H 2 0  to H3 O + )  is 25% 

larger than the b inding  energy of  N H  3 to NH~-. 

(ii) The  hydrat ion energy of  H3 O+ is 76% larger 
than that o f  NH~-, and the dissociat ion energy of  

( N H 3 ) ( H 2 0 ) H  + into H 3 0 + + N H 3  is about three 
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times larger than that for dissociation into NH~- + 
H20. Comparing the results for (NH3)2 H÷ and 
(NH3)(H20)H + we note that the solvation energy 
by NH 3 is 2.2 times larger for H3 O+ than for NH~. 

4. All-quantum dynamics of H 3 0  + and HsO2 + 
clusters 

We turn next to a discussion of results, illustrating 
application of the AQMD method, for H 3  O +  and 
(H20)2H ÷ at 150 K. In these simulations the elec- 
tronic structure was calculated within LDA (i.e. 
without exchange-correlation gradient corrections; a 
plane-wave energy cutoff E c = 96 Ry was used in 
the simulations). First we show in Fig. 2a for H 3  O +  

the distribution of distances of the protons from the 
oxygen, obtained via the AQMD method (solid line), 
and compare it with the results obtained via BO- 
LDA-MD simulations (dashed line, where the pro- 
tons were treated classically) at the same tempera- 
ture. As seen from Fig. 2a the OH distances are 
distributed over a broader range when the protons 
are treated quantum mechanically. The average value 
at 150 K for doll in H 3  O +  calculated from the 
BO-LDA-MD simulations (that is with the protons 
treated classically) is don = 1.852a0 (in this part we 
use the Bohr radius a 0 = 0.52918 ~ as the unit of 
length), and the expectation value from the AQMD 
simulation is (doll)  = 1.866 a 0 compared to a value 
of 1.844 a 0 calculated with no xcg corrections for 
the optimal (zero temperature) structure o f  H3 O+. 

For (H20)2 H÷, the distance distributions for doll 
in the H20 molecules and for the distance doll. 
between the oxygens and the 'intermolecular' pro- 
ton, obtained from the BO-LDA-MD (dashed) and 
AQMD (solid line) simulations, are shown in Fig. 
2b. Again the distance distributions obtained via the 
AQMD simulations are broader, and the doll + distri- 
butions are broader than those for doll. The average 
values obtained via the BO-LDA-MD method are 
doll = 1.833 a 0 and don. = 2.256 ao, and the expec- 
tation values from the AQMD simulation are (doll)  
= 1.849 a 0 and (doll÷) =2.281 a0, compared to 
don = 1.827 a 0 and dol l .= 2.242 a 0 in the optimal 
(zero temperature) LDA (with no xcg) structure. 

Further characterization of the intermolecular pro- 
ton in (H20)2 H÷ is given in Fig. 3, where we show 

12.0 

'7, o 8.0 

/'i (a) 
i ( H 2 0 ) H  ÷ 

0.0 
1.5 1.7 1.9 2.1 2.3 

12.0 

~ "  8.0 " 7 0  

(b) 

(H20)2H ÷ 

0.0 
1.6 2.0 2.4 2.8 

ro. (ao) 
Fig. 2. Normalized distributions of distances between the protons 
and the oxygen in (a) (HzO)H + and (b) (H20)zH +. Results are 
shown for simulations at 150 K where the protons were treated 
classically (BO-LDA-MD, denoted by dashed lines) and for 
AQMD simulations where the protons were treated quantum 
mechanically (solid lines). In (b) the distributions peaked about 
= 1.8 a 0 correspond to the OH distance in the water molecules 
and those peaked about 2.2 a 0 correspond to the distance between 
the intermolecular proton and the molecular oxygens. Distance in 
units of the Bohr radius a 0 = 0.52918 A. 

the distributions (obtained via BO-LDA-MD and 
AQMD simulations) of the magnitude of the projec- 
tion of the position vector of the proton on the 
normal plane bisecting the interoxygen vector (Dp in 
Fig. 3a), the distribution of the projection on the 
interoxygen vector (D z in Fig. 3b), and the distribu- 
tion of the magnitude of the distance between the 
proton and the midpoint of the interoxygen distance 
( D  r in Fig. 3c). We observe that the effect of the 
quantum treatment of the proton is to broaden these 
distributions, and that the width of the distributions 
reflects a rather shallow potential energy surface for 
motion of the 'bonding' proton. Further analysis of 
the dihedral angle distribution and that of the angle 
between the two HeO molecular planes indicates that 
(H20) :H + is a rather 'floppy' molecular ion, with 
low-frequency librations of the H20 molecules. An- 
other interesting finite-temperature feature of the 
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(H20)2H + molecular ion revealed by the simula- 
tions is exhibited in Fig. 3d where the calculated 
distributions of the difference between the distances 
of the intermolecular proton from the two oxygens of 
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Fig. 3. (a ) - (c )  Distributions of the projections of the vector 
position of  the intermolecular proton in (H20)2 H+ on the normal 
plane bisecting the interoxygen vector (Do, in (a)), and on the 
interoxygen vector ( D  v in (b)). Distributions of  the distance 
between the intermolecular proton and the midpoint of the interox- 
ygen vector are shown in (c). Shown in (d) are distributions of the 
difference between the distances of the intermolecular proton and 
the two molecular oxygens, Ad  = Ido l s+  - do2H+ [. Results ob- 
tained via AQMD simulations are given by solid lines, and those 
obtained from BO-LDA-MD simulations are given by dashed 
lines. Both simulations were performed at 150 K. Distances are 
given in units of a 0. 

the water molecules are shown. We note that values 
of the difference Ad = I dolH+- do2rt+ I (where 01 
and 02 are the oxygens of the proton-bonded water 
molecules) obtained in the AQMD simulations (at 
150 K) can achieve values which are up to twice 
those obtained in BO-LDA-MD simulations where 
the protons are treated classically (dashed line). 
Moreover we observed some correlation between A d 
and the magnitude of the interoxygen distance, indi- 
cating that larger values of A d correspond to larger 
intermolecular distances (i.e. larger interoxygen sep- 
arations). We expect that at higher temperature one 
may observe even larger variations in A d, correlated 
with larger values of the interoxygen distance, result- 
ing in the occurrence of configurations of ionic 
character ( H 3 0 + . H 2 0  and H 2 0 . H 3 0  +) in the 
equilibrium ensemble (in this context we note that 
for a certain interoxygen distance the transfer of a 
proton from H3 O+ tO a 2 0  involves a potential 
barrier, which collapses for smaller intermolecular 
distances). 

Further characteristics of the quantum nature of 
the protons in H3 O+ and (H20)2H + are provided 
by 

R r = p - - - ~  ( ( r  i - r ,+])  2 ) , (12) 
i=1  

where r i is the position of the ith bead (pseudo-par- 
ticle) on the isomorphic necklace (see Section 2), 
and the imaginary time correlation function [10] 

,.9~2(t- t ' )  = (I r ( t )  - r ( t ' ) 1 2 ) ,  

0 ~< t -  t' ~</3h. (13) 

The above quantities, which can be calculated for 
each of the protons, reduce for a free particle to 
R f =  v~-A where A is the thermal wave length 
(Rtr(150 K, H ÷) = 1.855 a0), and , 9 ~ 2 ( / - t ' )  = 
3 A 2 ( t -  t ' ) (  f l h  - t + t ' ) / ( f l h )  2, which for t -  t' 
= 1 f i b  (diameter of the necklace) takes the value 

~9~f2(lflh) = ~A3 2 (~f((½flh) ;  150 K, n + )  = 0.927 

a 0 ) .  
The value for R r (averaged over the three pro- 

tons) for H3 O+ obtained in our simulations is 1.588 
ao; R r for the molecular hydrogens in (H20)2H + 
was obtained as 1.523 a0, while the value for the 
intermolecular proton is 1.243 a0, all of which are 
smaller than Rfr at 150 K. 
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The imaginary time correlation functions ~ ( t -  
t ' )  for H3 O+ and (H20)2H + are shown in Figs. 4a 
and 4b, respectively (in the Fig. 4b we display ~ for 
both the molecular hydrogens, and for the inter- 
molecular proton). First we observe that for both the 
protonated clusters ,P~(1/3h) is smaller than its value 
for a free proton at 150 K. We also note that the 
character of the variation of 52' with k (where k is 
an index of the pseudo-particle on the classical iso- 
morphic closed necklace, i.e. 0 <~ t - t' = k ( f l h / P )  

~< h/3)  is different for H3 O+ and for (H20)2H + 
(see in particular Fig. 4b for H+). Thus while for 
H3 O+ , ~  varies in a manner similar to that pre- 
dicted for a free particle (see expression for ~ f ( t -  
t ' )  following Eq. (13)), those for (H20)2 H÷ (and in 
particular the one corresponding to the intermolecu- 
lar proton) exhibit a region in t -  t' where 9 satu- 
rates. This characteristic behavior is termed ground- 
state dominance [8], occurring when /3AE>> 1, 
where AE is the energy gap between the ground-state 
and the first excited state of the particle. From the 
above we conclude that while for the protons in 
H3 O+ and (to a somewhat lesser extent) the molecu- 

lar hydrogens in (H20)2 H÷, low-lying excitations of 
the quantized nuclear reactions are populated at 150 
K, the ground-state dominates for the intermolecular 
proton in (H20)2H +. 

The structure and the nature of the inversion 
tunneling in the hydronium ion, H30 +, have been 
the subject of a number of experimental and theoreti- 
cal studies [24-26]. The structure of H3 O+ has a 
pyramidal geometry 2, similar to its isoelectronic 
counterpart NH 3. Our generalized gradient correc- 
tion (GGC) LDA calculations with a plane wave 
cutoff E c = 158 Ry (a 543 grid, with a grid spacing 
of 0.25 a 0) yield an inversion barrier of 0.064 eV 
(516 cm - ] )  compared to a barrier of 672 cm -]  
obtained via analysis of high-resolution spectro- 
scopic measurements [25,26] (in LDA calculations 
with no xcg corrections and with a lower plane-wave 
energy cutoff Ec = 96 Ry, a lower barrier of 0.033 
eV was obtained). 

While a determination of the inversion rate using 
the path-integral based AQMD simulations is feasi- 
ble using the 'centroid method' [9], we show in Fig. 
5 (top) results for the distribution of u = cos 0 (0 is 
the angle subtended between the vector normal to the 
hydrogen plane to the oxygen and an OH bond 
vector) obtained at 150 K via BO-LDA-MD simula- 
tions (with classical protons, dashed line) and AQMD 
simulations (with the protons treated quantum me- 
chanically via the PI method, solid line). As noted 
before, in these simulations the electronic Born-Op-  
penheimer potential surfaces were calculated using 
LDA, with no xcg correction, with E c = 96 Ry; the 
corresponding calculated inversion barrier is 0.033 

2 In the optimal pyramidal geometry of H3 O+ the calculated 
(E c = 96 Ry with GGC) OH distance is doll = 1.859 a 0 (1.851 a o 
for E c = 158 Ry) with an angle /_(HOH) = 114.2°; the height of 
the oxygen above the three hydrogen plane is h o = 0.461 a 0 
(0.452 a 0 for E c = 158 Ry) and the angle between the normal to 
the hydrogen plane to the oxygen and an OH bond is 0 = 75.85 ° 
(the/--(HOH) and 0 angles are the same for both E c = 96 and 158 
Ry calculations). In the transition state for inversion the geometry 
of H3 O+ is of course planar with don = 1.849 a o (1.837 a 0 for 
E~ = 158 Ry) and /__(HOH) = 120 ° (in calculations with E c = 96 
Ry and no xcg corrections don = 1.849 a0, and h 0 = 0.417 a 0, 
/(HOH) = 115 ° and 0 = 76.95 ° for the pyramidal geometry, and 
don = 1.849 a 0 for the planar transition-state configuration). These 
values are in agreement with those used in the analysis of 
spectroscopical data for H3 O+ [26,27]. 
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Fig. 5. Top: distributions of u = cos 0, where 0 is the angle in 
H3 O+ between an OH bond and the vector normal to the plane of 
the hydrogens to the oxygen atom. Results obtained from simula- 
tions at 150 K, using the BO-LDA-MD method (classical protons; 
dashed line) and the AQMD method (quantum protons, solid line), 
are shown, u = 0 corresponds to the inversion planar transition- 
state configuration. Note the quantum enhancement of the inver- 
sion probability indicated by an increase in the probability to find 
the system in the vicinity of the transition state. (Bottom) Snap 
shots of configurations taken from AQMD simulations of H3 O+ 
at 150 K. The large sphere corresponds to the oxygen atom and 
the small spheres represent the pseudo-particles of the classical 
isomorphim (P = 8 pseudo-particles representing each proton). 
The configuration on the right corresponds to a pyramidal struc- 
ture of H3 O+, and the ones at the middle (side view) and left (top 
view) show a representative transition-state structure. 

eV (i.e. 373 K), which is over twice the temperature 
of  the simulations (150 K). A value of  u = 0, in Fig. 
5, corresponds to the inversion saddle (transition 
state) planar configuration (see a snapshot, taken 
from the A Q M D  simulation, shown at the bottom of  
Fig. 5) and other values of  u (positive and negative 
on the two sides of  the saddle) correspond to pyrami- 
dal configurations, see e.g., right configuration at the 
bottom of  Fig. 5 (i.e. a change of  sign of  u corre- 
sponds to an inversion). Comparison between the 
results obtained via the two simulations provides a 
measure of  the quantum enhancement of the inver- 
sion process. Further simulations (including GGC) to 
determine the inversion rate are in progress. 

5. S u m m a r y  

We have presented a novel method which unifies 
the quantum path-integral description of  the ionic 
degrees of  freedom with the BO-LDA-MD method- 
ology [4], thus allowing investigations of  physical  
systems where both the electronic and nuclear de- 
grees of  freedom are treated quantum mechanically 
(the all-quantum MD simulation method, AQMD,  
described in Section 2). 

Our simulations of  H3 O+ and (H20)2 H+ at 150 
K demonstrate broadening of  the distributions of  
internuclear distances involving the hydrogens due to 
their quantum nature. In the p ro ton-bonded  
( H 2 0 ) 2 H + ,  which  may  be wri t ten also as 
( H 2 0 ) H + ( H 2 0 ) ,  the state of  the intermolecular pro- 
ton is characterized by ground-state dominance (see 
Fig. 4) and our results for the spatial distribution of  
the proton suggest that at higher temperatures con- 
figurations of  ionic character (i.e. H3 O+.  H 2 0  and 
H 2 0 .  H3 O+)  may develop. Finally, a measure of  
the quantum enhancement of  the inversion isomer- 
ization in H3 O+, at 150 K, was demonstrated. 
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