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Dimensionality crossovers of plasmons in carbon nanotubes, modeled as curved layered electron-
gas superstructures, are investigated. For small wave vectors, the o plasmons exhibit a transition
from a one- to a three-dimensional character as the number of graphitic shells increases, in corre-
spondence with recent experiments. For large wave vectors, plasmons of two-dimensional character

are predicted.

Investigations of plasmon excitations in the recently
discovered carbon nanotubes,! and the ability to prepare
such structures with variable numbers of coaxial shells,
offer unique opportunities for exploration of the effects
of dimensionality on the nature of collective excitations
in curved low-dimensional electron-gas superstructures.
A similar issue was studied previously for planar geom-
etry in the context of layered two-dimensional-electron-
gas (2DEG) semiconductor systems, where an evolution?
to bulk layered-electron-gas behavior®* was found as a
function of the number of planar layers.

Most recently electron energy loss spectroscopy
(EELS) of carbon nanotubes® 7 has revealed a volume
plasmon at energies around 24 eV-27 eV for carbon
nanotubes comprising at least 25-30 coaxial graphitic
shells, and a shift to lower energies, as low as 15 eV, for
nanotubes with a small number of shells. While several
theoretical studies of plasmon excitations in carbon
nanotubes have appeared,® !° the evolution and charac-
ter of the plasmon as a function of the number of shells
were not addressed.

In this paper, we show that an assembly of coaxial
carbon nanotubules constitutes a unique superlattice-
type arrangement, where a succession of dimensionality
crossovers (from one to three, and then to two dimen-
sions) can occur as a function of the number of graphitic
sheets and of the o-plasmon wavelength, A = 27 /q, ¢ be-
ing the wave vector of the plasmon. Such crossovers may
account for the main experimentally observed trends.>¢

The o electrons of each graphitic cylindrical sheet can
be viewed as an electron gas confined on the surface of a
cylinder of radius R. As a result, the corresponding plas-
mon excitations in most instances have a one-dimensional
character, namely, the plasmon energies are given®!! by

wo(g ~ 0) = wpRg[2In(1.123/Rq)]*? , m =0 (1)

wm(q = 0) = wry/m , m > 1, 2)

where m > 0 denotes the plasmon modes corresponding
to the projection of the angular momemtum, and

wr = [4me’(n/2R) /m.]'/? ()
with n being the areal electronic density on the tubule
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and m. the electron mass. We note that for m = 0
the plasmon dispersion varies linearly with ¢ (with an
additional weak logarithmic dependence), while for m #
0 the plasmon energies for ¢ = 0 are finite and depend on
1/+/R, reflecting the energy gaps between the subbands.
Equations (1) and (2) describe the behavior of a 1DEG,
which is different from the ¢'/2 dependence of the 2DEG,
and the w, + cq? behavior of the 3DEG (w,, is the bulk
plasmon frequency as ¢ — 0). Nevertheless, it has been
shown that under certain conditions, namely, ¢R > 1
and kpR > 1 [where kp = (27n)'/2 is the Fermi wave
vector], an isolated solid or hollow narrow tubule can
exhibit?19:12:13 3 two-dimensional electron gas behavior.

For an isolated cylindrical graphitic sheet with radius
R (even for one with the smallest radius 6.4a9, where
a0=0.5292 A is the Bohr radius), the areal density of
the o electrons is rather high (namely, 0.319a, %), and
the condition kR = 9.1 > 1 is well satisfied. In this
limit, the index m can be treated as a continuous variable
and the free polarizability D° of the o electrons can be
calculated in a closed form,°

D° = Q?Rk%/(2mm.w?) = Q?Rn/(m.w?), (4)

where Q is a two-dimensional wave vector equal to
(m/R,q), q being the collective wave vector parallel to
the symmetry axis.

Apart from a factor R, expression (4) agrees with the
free polarizability of a 2DEG (see Ref. 2). The frequen-
cies of collective modes of the tubule are those for which
the dielectric function vanishes, i.e., they are solutions of
the equation

1-V(Q)D°=0. (5)

In Eq. (5), V(Q) is the Fourier transform of the Coulomb
force in cylindrical coordinates, given by!4

V(Qa"'ia"'j) = 47"62Im(q7'<)Km(qr>) P (6)

where I, and K, are the modified Bessel functions, and
r> = max(ri,r;) and 7o = min(r;,r;) (on the same
tubule r; = r; = R). For the tubule to be a 2DEG, V
must exhibit the behavior of the two-dimensional Fourier
transform of the Coulomb force, namely, 27e?/q. In the
case of a single tubule, expression (6) reduces to this limit
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when ¢gR > 1, as can be seen by using the well known
asymptotic expansions*

1 Fs
I, (z) — e’ Kn(y) = /| —e ¥ z,y>1. (7
(z) Wor (v) V 25 z,y (7)

For values ¢ > m/R, the plasmon dispersion is indeed
proportional to ¢'/2? independently of the value of m.

For two or more coupled coaxial tubules (shells), we
can generalize Eq. (5) by following the self-consistent-
field (also known as RPA) method,!® leading to a matrix
equation?

N
Ui=Y MyUj,

i=1

(8a)

where the indices (7,j) correspond to different tubules,
whose total number is N. The vector U denotes the
amplitude of the induced field, u;(q,w) = U; exp(—igz —
iwt) on each tubule, and the nonsymmetric matrix M
has elements

M;; = V(Q,R;, R;)DY (8b)
4me’n m 2
— 2
= ot R; (—R,-) + ¢*| Im(qR<)Km(qR>) .

Qualitative insight can be gained by considering cer-
tain limiting situations. Indeed, considering plasmons
with wavelengths much smaller than the innermost ra-
dius R;, so that qR; > 1, we can apply the asymptotic
expansion (7) to all tubule indices ¢ and j. Addition-
ally, assuming that the width A of the hollow cylindrical
superlattice is small compared to the innermost tubule
radius (i.e., A/R; < 1), we can treat the magnitudes
of all tubule radii as equal in the exponential prefactors
[see Eq. (7)], and consider only effects due to the length
differences, R — R>, = —|R; — Rj|, in the exponents.
With the further approximation that sufficiently many
shells can be packed within the inner and outer radii
(i.e., d/A < 1, d is the intertubule distance), the limits
over the j summation in Eq. (8a) can be extended from
—oo to +oo. Then Eq. (8a) simplifies to the following
dispersion relation (when ¢ > m/R;)

1 = [2me’ng/(mew®)]S(q) , (9)

where S(q) is given by

S(q) = Z e~ A Ri—R;| Ze—tﬂi—jld . (10)
J J

Furthermore in this case, the summation over j yields

S(g) = coth(qd/2).

In the weak coupling limit, ¢gd > 1, the tubules de-
couple, each shell responds independently with its own
two-dimensional plasmon, and the collective excitation
of the assembly is

w R (27rezn/me)1/2q1/2 .

(11)

In the opposite strong coupling limit, ¢gd < 1,
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coth(gd/2) =~ 2/qd, and the super-structure has a plas-
mon with energy
wp & [4men/(m.d)]*? . (12)
The ratio n/d defines an effective volume density, and Eq.
(12) represents the corresponding volume (3D) plasmon.
We note that Egs. (11) and (12) recover the results of
Fetter,® obtained for a planar geometry, since the wave-
length of the plasmon, A, was taken by us to be small
compared to the inner radius R; (i.e., gR; > 1). The
finite value of the curvature reasserts itself as soon as
qRN < 1, when the assembly reverts to a 1IDEG behav-
ior (see discussion below in connection with Fig. 3).
While the analytic results demonstrating the emer-
gence of the volume plasmon in coaxial tubules (as well as
the crossover from 1DEG to 3DEG) were obtained above
for certain idealized circumstances (e.g., d K A < Ry),
our numerical study of the solutions of Eq. (8) shows that
similar behavior maintains also for cases corresponding
to actual carbon nanotubes (i.e., when R; = d = 6.4a,).
Figure 1 displays the solutions of Eq. (8) as a function
of the number N of carbon tubules when the wave vector
q = 0.02a§1. For this value of ¢q, one has qR; = ¢d =
0.128 (strong coupling), and as a result the response of
tubules with only a few shells approximates the response
of a 1IDEG. Indeed, from Fig. 1(a), the value for N =1
and m = 1 is fuw; = 15.19 eV, in agreement with expres-
sion (2) for ¢ = 0. However, as the radius Ry = Nd
of the outermost tubule increases, the product ¢Rnx be-
comes larger than unity, which as aforementioned would
lead to a 2DEG behavior for individual tubules and to
the development of a 3D plasmon due to the intertubule
couplings. The onset of such a crossover from a 1D to
a 3D behavior is expected when N reaches a value such
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FIG. 1. Solutions for ¢ = 0.02a;' versus the number of
shells, N, in the carbon nanotube. The innermost radius
R, = d, where d = 6.4a, is the intertubule distance. Solutions
for N = 1 are denoted by a triangle. (a) The m = 1 mode.
(b) The m = 0 mode.
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that gRy = 1, or N ~ 8 for ¢ = 0.02a;*. For N > 30,
the N solutions of Eq. (8) form a band, bounded between
upper and lower limits, independent of N. As discussed
in the case of finite planar superlattices? such behavior
is characteristic of a 3DEG. The top of the band is the
3D plasmon and carries most of the oscillator strength.
Indeed, taking the areal density of the o electrons to be
n = 0.319a; %, and applying expression (12), the value
of the bulk plasmon is 21.53 eV (using the bare electron
mass'®), which practically coincides!? with the value at
the top of the band [see Fig. 1(a)].

For m = 0 [Fig. 1(b)], the one-dimensional behavior
described by Eq. (1) is reproduced. Indeed, for N = 1,
the plasmon has a value close to zero, unlike the finite
value of the m = 1 case. In spite of the different behavior
for the first few tubules, both modes develop the same
volume band for N > 30. In particular, the top and
bottom limits in both bands are similar in value.

In Fig. 2(a), we exhibit the development of the 3D
plasmon for N = 30, as a function of the wave vector
g. Note that for ¢ < 0.04a;", the superlattice behaves
as a 1DEG, while in the region 0.05 < ¢ < 0.10 a 3DEG
develops, since the top of the band is very close to the 3D
plasmon, i.e., 21.53 eV (see inset). For values ¢ > 0.3a5!,
the coaxial tubules decouple from each other, and the su-
perstructure exhibits a ¢'/2 behavior characteristic of a
2DEG. Figure 2(b) displays the behavior of an assembly
for N = 5 tubules as a function of ¢. It is apparent that
the top of the five-level band does not saturate near the
value of 21.53 eV, and consequently the dominant collec-
tive mode for an assembly of a small number of tubules
passses from the 1DEG case directly to the 2DEG behav-
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FIG. 2. Solutions for the m = 0 mode for a carbon nan-
otube with a fixed number of shells, N, vs the wave vector
g. The innermost radius R; = d, where d = 6.4a9 is the in-
tertubule distance. The dimensionalities of the plasmons are
indicated at the top. (a) N = 30 shells. (b) N = 5 shells.

7979

ior without an intermediate 3D behavior (this result is in
agreement with that of Ref. 10, where the case N < 4
was studied).

Finally, Fig. 3(a) displays the behavior of a coaxial-
tubules superstructure as a function of N when ¢ = 0.
In this case, gRy = 0 for all radii, and one expects a
1DEG behavior. As an example, we have considered the
case with an innermost radius R; = 5d. As Fig. 3(a)
shows, increasing the number N of tubules produces a
band that has certain similarities with the 3D band of
Fig. 1(a). However, the top of the band saturates at val-
ues which depend on the inner radius and are different
from the value 21.53 eV of the 3D plasmon. To demon-
strate this point, we show in Fig. 3(b) the top of the
m = 1 bands for the case of an assembly of N = 100
tubules as a function of ¢ for different values of the in-
nermost radius (R; = 1d, 5d, 10d, 20d, 40d). Near q = 0,
the top of the band depends strongly on the value of
the inner radius (IDEG behavior). However, when ¢ in-
creases one observes a crossover to a 3DEG behavior,
since all the curves converge rapidly to the 3D-plasmon
value (21.53 eV).

In summary, we showed the following.

(I) For small g, such that gR; = gd < 1 (strong cou-
pling), a transition from a characteristic 1D to a 3D bulk-
plasmon behavior may occur upon increase of the num-
ber of shells (V) comprising the nanotube [(e.g., onset
of such a transition is predicted to occur at N = 10 for
g =0.02a, ", and may depend on g); see Fig. 1].

(IT) For a multishell nanotube (large N), the character
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FIG. 3. (a) Solutions for the m = 1 mode for ¢ = 0, vs
the number of shells, N, in the carbon nanotube. The in-
nermost radius R; = 5d, where d = 6.4a0 is the intertubule
distance. (b) The top level of the m = 1 band for several car-
bon nanotubes with N = 100 shells, versus g. Numbers label
nanotubes with innermost radii R; = d, 5d, 10d, 20d, 40d.
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of the collective o excitation changes from a 1D plasmon
for small values of ¢ to a 2D plasmon for large g (de-
coupling regime of the excitations of individual layers),
with the occurence of an intermittent 3D plasmon for a
certain range of intermediate values of g; see Fig. 2.

(III) The nature of the crossover from 1D to 3D behav-
ior of the plasmons for small ¢ depends strongly on the
value of the innermost radius of the nanotube; see Fig.
3.

Most pertinent to our discussion are the observation®
of a systematic downward shift in the plasmon energy as
the size of the nanotube (number of layers, N) is reduced,
and the detection® of a 15 eV plasmon for nanotubes with
N < 12 as well as the development of a graphiticlike
bulk plasmon at 24 eV [or 27 eV (Ref. 6)], for larger N.
These observations were interpreted by either invoking
an effect of the 7 electrons on the o-electrons collective
excitation,® or by conjecturing® that the 15 eV plasmon
corresponds to a surface plasmon (i.e., w, = wp/4/2), in
conjunction with conformal invariance.®

A fully quantitative comparison of theory with these
measurements requires knowledge of the momentum
transfer g (which was not reported in these experiments)
as well as possible improvements of our theoretical model
(e.g., including coupling between the o and = electrons
and/or considering the finite width of each individual car-
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bon tubule). Nevertheless, the main trends found in these
measurements may be explained in the framework of our
model. Accordingly, we suggest that in such experiments
for small ¢ (¢d < 1), the plasmons in nanotubes with a
small number of shells (i.e., as long as the outermost ra-
dius Ry is smaller than 1/q) are of 1D character, shifting
to 3D plasmons as the number of shells increases (Fig. 1).
We believe that this is the case pertaining to the current
experiments.>”7 Furthermore the 1D plasmons, and thus
the nature of the transition to the 3D plasmon, is pre-
dicted to depend on the radius R; of the innermost tubule
(Fig. 3). On the other hand, for gd >> 1, we predict 2D
plasmon characteristics for all number of shells N and all
values of R;, since R; > d (Fig. 2). For a range of inter-
mediate values of ¢ (¢gd ~ 1) mixed character situations
may arise. For example, in the case Ry = d, a transi-
tion from an intermediate 1D-2D behavior for small N
to an intermediate 3D-2D behavior occurs as the num-
ber of shells N increases (Fig. 2). Finally, our results
suggest that systematic investigations of the nature of
dimensionality crossovers of the plasmon in carbon nan-
otubes would require experimental energy-loss data as a
function of the momentum transfer.
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