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We present a new formulation for simulations of metallic systems which allows for volume and
shape variations and incorporates explicitly the dependence on density of the ‘“‘volume energy’’ and
the effective pair potentials. Simulations of liquid Mg yield good agreement with experiments for
several properties including internal energy, density, and structure factors at several temperatures
(T) and pressures (P). Correlations between fluctuations in 7, P, and volume are in approximate
agreement with the appropriate thermodynamic relations.

PACS numbers: 61.20.Ja, 61.25.Mv

Molecular-dynamics (MD) simulations, which con-
sist of the numerical solution of the equations of
motion of a many-particle system, have become an im-
portant theoretical tool in investigations of the micro-
scopic structure and dynamics of material systems.
Practical simulations of extended systems involve up
to a few thousand particles (N), contained in a calcula-
tional cell (CC) which is repeated via periodic boun-
dary conditions.! In earlier work the volume (Q) of
the CC was kept constant, thus yielding phase-space
trajectories of an (N, Q,U) ensemble (or a micro-
canonical ensemble since the internal energy U is con-
served). To study phenomena which inherently in-
volve changes in volume or structure several new
methods have been proposed and implemented, such
as the Ansatz Lagrangian®3 and constrained-dynamics!
techniques.

Underlying the structural and dynamical properties
are the various contributions to the total energy of the
material. While for the rare-gas, molecular, and ionic
systems a satisfactory description may be given in
terms of pairwise (and higher-order) interactions, it is
well known that the cohesive energy of a metal con-
tains, in addition, density-dependent contributions
which are structure independent and that the metallic
effective pair potentials themselves depend on
conduction-electron density.

In the new method which we have developed the
volume-dependent contributions to the energy are ex-
plicitly included in the derivation of the Lagrangian
equations of motion. The method thus circumvents

L=53ms[-G-§—
i i1

the need to impose artifically an external ‘‘electron
pressure’’ in the simulation and is designed for studies
of equilibrium and nonequilibrium phenomena involv-
ing volume and structural changes in metallic systems.
Consider a metallic alloy with N, particles of species
o and a total number of particles N = 3, N,, contained
in a CC of volume . The periodic replications of the
CC are labeled by 1=(/,l5,;3)T with I,=0, +1,
+2,... («=1,2,3), and the position of particle j in
cell 1is given by r,(D=H" (sj+l) where s; = (5;1,52,
5307, —+ < sa< 3 (@=1,2,3), and His a 3x3 ma-
trix with det(H) = Q. The cohesive energy for a sim-
ple metal alloy can be written as*

Er=Eq+ 3306/ (re,ry (1)), (1a)
i1
En:EUNG[ZvEel("s)+¢<(rl)(rs)], (1b)

where r;(1)=|r;—r;(1)|, r; is the electron density
parameter, Z, is the valence number, £, is the energy
of the uniform electron gas, and ¢{! is a single-
particle contribution. ¢ and the density-dependent
effective pair potential ¢?) are derived via pseudopo-
tential theory* and their specific form depends upon
the choice of ionic pseudopotentials (model, local,
nonlocal).

To allow for temporal volume and shape variations
the components of the matrix H are taken as dynami-
cal variables. The Ansatz Lagrangian is obtained by re-
placement of all the terms in the kinetic energy which
involve H with + W Tr(H7-H), where W has the
dimension of mass, yielding

305 (rery(D)+ + WTr(HT-H) — Eq (1) — Peyt 2, (2)

where G=H7-H. The above Lagrangian extends that of Parrinello and Rahman? to include the volume energy
Eq(ry) and the volume dependence in the pair potentials. The restriction to volume variation only (Andersen’s
Lagrangian®) is obtained by setting H= LH where H is a constant matrlx and L is a dynamical variable with the
dimension of length. With the definitions Vj;(r,X;(1)) =02 (re,r;(1)), where X;(1)=r;(1)/rs, and
Xy(re,X)=—(1/X)8V;(r;,X)/8X, and with the prime denoting derivatives with respect to r,, the Lagrangian
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equations of motion follow:

ms,; = r,‘zzl’XU(rs,z\’U(l))s,-j(l) -G 1-G-§,,
J

(3a)
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For a constant-shape MD CC, Eq. (3b) is replaced by

WTr(G)L"1Z=E,m,-é,T-G-si—rs[ 2 i (e, Xy (D) + Eq ()| = 3Q Py

For calculations of dynamical properties a proper
magnitude of the mass parameter W is to be chosen.
Adopting the approach of Andersen’® we start from an
approximate equation of motion for the cell volume
Q, d2QY3dr= W1 (P— P,,) Q¥3, where the inter-
nal pressure is given by P= —3B,(1— Q3/(Q)3)
and B; is the adiabatic bulk modulus. The wavelength
of the acoustic phonon, whose frequency equals that
of the volume oscillations determined from the above
equation [wq=(3B,QY3 /W], is rg=2m(W/
3MY2Q 3 where M is the total mass of the particles
in the CC. Modes with A =< L, where L approximates
the linear dimension of the CC, are already present in
the simulation; we choose W such that A\g =2.5L.

To illustrate the method we carried out simulations
of liquid magnesium at several temperatures and
external pressures. Since liquids do not resist shear
stresses, random fluctuations in the CC shape may
eventually result in undesirable cell shapes which lead
to interactions between particle images. To alleviate
this problem and to minimize any deviation in spheri-
cal symmetry due to the periodic boundary conditions,
we have used Eq. (3¢c) (constant-shape CC) with H
chosen so that H-1 describes an fcc lattice. The
single-particle and pair-particle potentials, (b(” and
¢? were obtained from a simplified Heine-
Abarenkov ionic pseudopotential® with exchange
correlation included via the Singwi et al.® local-field

|
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ij,1

P=[—rs

At T=960 K, the volume, pair-potential, and kinetic
contributions to (P) are —0.55, 0.52, and 0.03
mRy/ag, respectively.

We have calculated, in addition to average thermo-
dynamic quantities, their mean square deviations for
which the following relations hold in the isoenthalpic-
isobaric ensemble!%:

C=;_N§AT2) _o)(ry
P]3 (T)? b <A92>
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correction. In addition, the Hartree contribution to
61 was scaled by a parameter zy.” The pseudopoen- -
tial parameters r., u., and zy were chosen to fit exactly
the zero-temperature cohesive energy, bulk modulus,
and density and to give the correct, hcp, crystalline
structure (7, =1.824a,, u,=0.5484 Ry, z;;=0.9407).
The resulting pair potential and its derivative with
respect to r; are shown in Fig. 1, for densities corre-
sponding to 0 K and that of the liquid at 960 K. The
integration time step was Af=1.46%x10"1° sec and
N 500 particles. Simulations were performed for
P...=0 at three temperatures, 960, 1070, and 1150 K,
and for P.,=0.1 mRy/ai at =1070 K
[ T(melting) =922 K]. The period of Volume oscilla-
tions was found to be 1o = 1300A¢. The results shown
in Table I are averaged over intervals of at least 5¢¢
for the equilibrated samples, chosen so that the aver-
age particle and cell temperatures [left- and right-hand
sides in Eq. (4), respectively]l were approximately
equal:
BN =3)"Y(2msT-G-§)
~(WTr(H”-H)). 4)
As mentioned above, an advantage of the present
formulation is that the internal pressure P of the sys-
tem [Eq. (5)] contains all contributions and at equi-

librium, (P) = P, which yields the correct density.
The internal (virial) pressure is given by

Q)

r

where ¢, is the isobaric specific heat per atom; By is
the adiabatic bulk modulus; 7, the kinetic tempera-
ture, is defined as twice the instantaneous kinetic en-
ergy per degree of freedom; and angular brackets indi-
cate a time average.

The results obtained are shown in Table I along with
available experimental values. The internal energy, U,
is the sum of the potential- and Kinetic-energy terms
in the Lagrangian, but with omission of the term in-



VOLUME 54, NUMBER 15

PHYSICAL REVIEW LETTERS

15 APRIL 1985

4
i . a,p’
- e
= i
E 07
=41 T T
2 6 10 14

r[a,]

FIG. 1. Effective pair potential, ‘?, and derivative with
respect to r,, $'=09¢?/9r,, plotted vs interparticle dis-
tance, r, for densities corresponding to temperatures of 0 K
(ry=12.650ay, solid lines) and 960 K (r,=2.764a,, dashed
lines).

volving H. The experimental values for U are ob-
tained from the cohesive energy at 7=0,8 the ioniza-
tion energy,’ the heat of melting,® and ¢,(T) for liquid
and crystalline phases.! The thermal expansion coef-
ficient, a=r,"19r/97T, is obtained from a two-
parameter fit to the simulation results, r,=ay(5.404

Xx1072—6.94x10"¢T [K])~Y3. The agreement be-
tween experiment and simulation for U, ry, and « is
quite good considering the uncertainty in the experi-
mental values and the fact that a simple local model
pseudopotential fit to 7=0 properties was used in the
simulation. The experimental value of By was ob-
tained from that of By, and the measured value!! of
By/B;=0.75 (at melting). The entries in Table I la-
beled ““(diff)”> were estimated from differences in
U(T,P). Reliable experimental values for ¢, are avail-
able only near melting, and ¢, is estimated‘opto be con-
stant over the temperature range of our simulations,
while our results indicate that ¢, decreases with in-
creasing 7. The differences between the experimental
and estimated (diff) quantities and the corresponding
thermodynamic relations involving fluctuations may
be attributed to the small number of particles
(N=>500) and the difficulty in adequately sampling
the phase space due to the time scale associated with
volume oscillations [see discussions preceding Eq.
(4)]. Finally, we have calculated the diffusion con-
stants, D, via the velocity autocorrelation functions,
and the electrical resistivity, p, and thermopower, Q,
using the Faber-Ziman theory!? and the static structure
factors obtained from the simulation (the correspond-

TABLE 1. Simulation results and comparison with available experimental data (expt).
Angular brackets indicate time averages (see text). With the exception of Br(diff), all

simulation results correspond to ( P) = P, =0.

(T) 960 K 1070 K 1150 K
U/N (expt) (Ry)? —1.762 —1.759 -1.757
(U/N) —1.7496 —1.7464 —1.7443
rs(expt) (ao)® 2.741 2.759 2.772
(rs) 2.764 2.779 2.790
alexpt) (105 K-1)b 5.63 5.73 5.83
P 4.88 4.97 5.03
cp/kp (expt) © 3.9 39 3.9
¢, (diff)/ kg ¢ 4.88 4.27 3.90
(- ((TYYN(AT?))-1]-! 3.8 4.7 3.8
B;(expt) (mRy/ag)* 1.75 1.67 1.60
(Q) (kgT)/(AQ?) 1.76 1.68 1.70
whW/3(Q13) 1.4 1.3 1.3
Br(expt) © 1.31 1.25 1.20
Br(diff) ¢ 1.4
D (107° cm?¥sec) 2.4 3.6 4.9
p (uQ cm) 16.5 16.0 15.8
Q (uV/K) 1.45 2.47 2.82

2References 8, 9, and 10.
bReference 9.
°Reference 10.

dEstimated from differences (see text); the averages of the two temperatures used to obtain G (diff)

are 1015, 1055, and 1100 K, respectively.

¢Reference 11.
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ing pair-correlation function at 77=960 K is in good
agreement with experiment!4). Our results of a posi-
tive Q and negative dp/dT are typical of divalent liquid
metals. Experimental values for p and Q at melting
are 27 uQ cm and 1.5 wV/k, respectively.!’

In conclusion, we have developed an Ansatz Lagran-
gian method for the MD simulation of simple metal
systems in which the density dependence of both the
structure-dependent ‘‘volume-energy,”” Eq, and the
effective pair potential is explicitly included. The
volume (and optionally the shape) of the MD CC is a
dynamic variable; the cell responds to pressure fluc-
tuations and there is no need to impose an external
‘‘electronic’’ pressure to achieve the correct density.
The method is thus suited to simulation of processes
which involve changes in temperature, pressure,
and/or volume such as crystal nucleation and the for-
mation and annealing of a metallic glass. Since fluc-
tuations in these quantities are predicted to play an im-
portant role in the nonequilibrium processes men-
tioned above,!® our method should result in a more
realistic simulation of such processes than the conven-
tional constant-volume or density-independent poten-
tial simulations.
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