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Using solvable models it is shown that coupling one- and two-dimensional systems to substrates produces
significant alterations in their long-range order and scattering characteristics, even if the coupling is very weak.
Expressions for Peierls’s long-range-order parameter, {52, are obtained, with their asymptotic forms, and static

structure factors, .S (6), are evaluated.

Recent theoretical and experimental studies of
systems of “less than three dimensions” have in-
spired a resurgence of interest in this subject.
Among the systems reported to exhibit one-di-
mensional (1D) or quasi-1D behavior are some
organic! and inorganic® complexes. Systems ex-
hibiting two-dimensional (2D) or quasi-2D be-
havior include adsorbed layers,® electrons trapped
on a liquid helium surface* and thin “soap-bubble
films.®” Particularly intriguing are questions of
ordering (degree and type) and stability in such .
systems.®"!° Of special interest here is their
degree of long-range order in light of physical
arguments,® and rigorous proofs” that frue long-
range order does not exist for sf7ict 1D and 2D
systems. Since the physical systems mentioned
above are coupled to a skeletal or substrate en-
vironment, one should expect, in general, quasi-
1D or quasi-2D rather than strict 1D or 2D be-
havior. Such coupling effects have been observedin
recent neutron-scattering studies of Hg,_;AsF,* !
and of phases of CD, monolayer films on graphite'?
for which the scattered neutron line shapes could
not be interpreted, even for the registered (com-
mensurate) phase, on the basis of strict 2D theor-
ies.

Our purpose is to show that coupling to a sub-
strate significantly affects the degree of long-
range order and scattering characteristics in
certain 1D and 2D model systems. To elucidate
our discussion we limit our considerations to cer-
tain solvable models employing simple coupling
schemes.

A measure of the long-range order in an N-
particle system is provided by the function {52z
=((@@, -T,) - k)’ given by

(02 = 4m) ™ 20AIT; &1 sin* G- R,), (1)
q

where 1, is the deviation of particle n of mass m
from its equilibrium position R,, K is an arbitrary
direction in the lattice, and U7 is the normal-
mode amplitude. The angular brackets denote

temperature ensemble averaging. At sufficiently
high temperatures, T (typically larger than the
Debye temperature) equipartition can be used®'®
to write <l_ﬁa *R|?) = kgT w2, where w, is the nor-
mal-mode frequency.

Consider first a 1D chain of atoms of lattice
spacing a and interparticle nearest-neighbor (NN)
force constants K. Let it be coupled via NN and
next NN force constants K, and K,, respectively,
to a 1D parallel substrate chain of heavy masses
each a distance a, for simplicity, below a lattice
site of the first chain. In the harmonic approxi-
mation, and for a stationary substrate, the longi-
tudinal normal-mode frequency (des¢ribing mo-
tions along the chain axis) is given by w?= (4K/
m)[R?+ sin?(qa/2)], where 2R =K% /K? is a mea-
sure of the interchain relative coupling strength.
Notice that this mode possesses a ¢=0 gap, equal
to 4KR?/m. Using the high-T approximation and
the above w,, transformation of the sum in Eq.
(1) over § to an integral and converting to a con-
tour integral in the complex plane yields the fol-
lowing closed-form result:

s . 1-[2R2 — 2R (R? 1/2|n
<5n>/a =°< [ R(-;z]z.+1)1/(2R +1) ] )
=C,(1-e™%"), 2)

where o = kgT/2Ka? (typically'! of the order
1073-107%). In the limit of vanishing coupling,

R =0, and for large » the previously known re-
sult™ (62) /a®~ (20)n is recovered. With a cri-
terion that long-range order exists when (562)/
a?<1as n-w, it follows that there is a long-
range order if R = o, so that even weak coupling
to a substrate restores long-range order. The
modified behavior upon coupling is shown in Fig.
1(a).

Using the expression given in Eq. (2), the fre-
qugncy-iniegrated dynamical structure factor
S(Q) (for Q parallel to the chain) can be evaluated,
yielding
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(3a)

cosh(aj) - cos(Qa

where 2f2=Q*C, and G is a reciprocal-lattice
vector. In the limit of vanishing interchain cou-
pling** S"(@) [and S(é)] consists of a series of
narrow peaks centered upon the reciprocal-lattice
vectors. For nonvanishing coupling strengths a
broadening of the peaks accompanied by a pro-
nounced asymmetry occurs as shown in Fig. 1(b)
(note changes in scales). Sufficient accuracy is
obtained by truncating the sum over ! in Eq. (3a)
typically at /=3-5. The above could provide prac-
tical functional form for fitting purposes.

We turn next to the evaluation of (63(p)) (where
p=7,/a and 7, is an interparticle distance in an
arbitrary direction) for a 2D square lattice, of
lattice constant a which is coupled to a stationary
square substrate layer via NN and next NN force
constants K, and K;,. Following arguments similar
to the above, we obtain

2470 _
(63(0)) /a? = (o/21)p~" f dyy I%

@)

where the Debye cutoff has been employed and J,
is the Bessel function of the first kind. For van-
ishing interplane coupling, R =0, the previously®:®
derived asymptotic logarithmic divergence of
(63(0)) is observed. For finite coupling asymp-
totic analysis yields nonlogarithmic asymptotic
behavior (see Appendix).

(oten/at o/n) (FR) - FHREIEY (oa)

where

FR)= fzn dy y(2R?+1 —cosy)~*. (5b)

[

Numerical evaluation of Eq. (4) for various values
of R indicated that good fits to (63(p)) are given

by the form A —B exp(—yp~/?) where A, B, and y
are constants dependent upon R. Sample results
are shown in Fig. 2(a). Using the above form, an
expression for S’(é) (for (5 parallel to be plane)
can be derived, yielding

:
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FIG. 1. 1D chain coupled to a stationary substrate
chain. (a) (oﬁ) vs n, for various values of relative coup-
ling strength R. Solid lines after Eq. (2); dashed lines
correspond to.the R=0 case. (b) Subtracted static struc-
ture factors, S’(Q), around the first Bragg peak for
various coupling strengths, ¢=10-%. Note changes in
scale.
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FIG. 2. 2D layer coupled to a stationary substrate layer. (a) (cr,?(p)) vs p=7,/a for various values of R. For R=0,
results obtained with (dotted) and without (solid) the long-wavelength approximation are shown. For finite R values, re-
sults are shown using Eq. ‘(4) (solid) and via the indicated fits (dashed). (b) Subtracted static structure factors, $' (@),
around the (10) Bragg peak for several coupling strengths, R, 0=10"%. Note changes in scale.

§'(Q=S(Q -8(Q, G) exp(-AQ2/2)

= exp(-AQ%/2) (4 2 Y cos(Q,ka) cos(Q,va)[exp(3B Q21 WYY _q]

H=0 v=0

-2 Z cos(Q,Ka) [exp(:B Qze'”‘l/z) -1] - z cos(Q,va)|exp(4B Qze'V"l/z) -1]
p=0 v=0

+exp(38) - 1), (6)
f
where A, 1%, and y are the parameters defined sample in the x and y directions. Results for
above and G is a reciprocal-lattice vector of the S’(é) around the (10) Bragg peak, for various val-
2D net. For a finite sample the summations in the ues of R, are shown in Fig. 2(b). It is of interest
above equation should extend up to N,/2 and N,/2, to comment that for a strict 2D lattice, i.e., R=0,

where N,a and N,a are the extensions of the 2D the peaks in S(é) near reciprocal-lattice vectors
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G are given by power-law singularities,® NG)
~|Q=G|2*"ED) | where the bounded exponents
n&(T) are related to the elastic moduli of the lat-
tice. yVe; note that for both the 1D and 2D cases,
the 6(Q, G) term has been subtracted in S’(Q)

[e.g., Eq. (3a)]. This term which is absent in the
R =0 limit" increases with R, i.e., increasing co-
herent scattering intensitygt Q=G. Corres-
pondingly, the residual S’'(Q) decreases in ampli-
tude and broadens upon increased coupling to the
substrate [note scales in Figs. 1(b) and 2(b)].

- It is important to note that for both the 1D and
2D coupled systems the long-range-order parame-
ters exhibit an altered asymptotic behavior,
deviating significantly from the uncoupled results
(R=0) even for small substrate coupling strengths
[Figs. 1(a), 2(a)]. In fact, for both cases (52)
converges to a limit at microscopic distances
even for small R values. Consequently, even for
small couplings to the substrate strict 1D or 2D
behavior is lost. This is due to the fact that by
turning on the couplings to the substrate (finite R)
the number of possible paths for linkage between
any two atoms increases (the effective increase
is related to the value of R). Thus the tendency

to maintain long-range-order increases upon
coupling. These characteristics are exhibited in
the integrated scattering functions [Figs. 1(b),
2(b)], which provide possible forms for the inter-
pretation of experimental data.

While we recognize that the above model calcula-
tions employed simplifying assumptions, such as
a particular geometry, range of interaction, clas-
sical description, and a stationary substrate, the
essential results pertaining to the salient effects
of the dimensionality of the system on the degree
of long-range-order and scattering characteristics
should remain valid in more general circum-
stances. Moreover, the first three assumptions
can be easily relaxed (for commensurate arrange-
ments) and do not modify the main conclusions.
Noncommensurate configurations and couplings
to extended nonstationary substrates remain the
subjects of further investigations.
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APPENDIX

In this Appendix we outline the evaluation of the asymptotic expression for (63(0)) given in Egs. (5).

First, we rewrite Eq. (4) as

(6300) /a®= (%);1. J’ e 1=dy(Bx)

*oRE+1- cos(x/n) ’

(A1)

where in terms of the lattice constant, a, the distance between two lattice sites 7, (=pa) is equal to Ban
(Ba is the smallest distance between lattice sites in a chosen direction, and % is an integer). Owing to the
large value of » with which we are concerned, the denominator of the integral in the above equation varies
much more slowly than the numerator. Therefore, we partition the integral into a sum of integrals in

which the denominators are almost constant,

. s (O fi= (m+ )T 1-J,(8x) 2nT 1—J,(8x) ‘ )
(03l /a* = (W) (,;,Afm WX R 1= cost/m) an R T . cos(x/n)) ’ (42)

where # is the largest integer such that 77 < VT . Considering the denominators in the integrands in Eq.
(A2) as constant over their ranges of integration and performing the remaining integration, we obtain

2 2 0 [ (m +4)n?
(0ol /a®= W(MZ:O 2R%+1 - cos(mn/n)

i

cosmm/n) - coslm +1)n/n

mnd ,(Bmm)

+

Consider the first sum in Eq. (A3). With negligible
error (large n) the argument of the cosine in the
denominator can be replaced by y,,= (m +34)71/n.
Converting to an integral we get to a good approxi-
mation the expression n2F(R), where F(R) is given

2 [2R%+1 - cos(mn/n)[{2R%+ 1 - cos[m — L)n/n|} B

2n/w J,(28nVT) )
T B[2R®+1-cos(@n/n)]/°

(A3)

|
by Eq. (5b). Next, we approximate the third term
in Eq. (A3) by replacing the argument of the cosine
in the denominator by 2V7 (note the above defini-
tion of 7). Now, note that the first term in Eq.
(A3) contributes a constant term, (0/7) F(R), to
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the asymptotic form of {(6%(n))/a? while the third
term behaves asymptotically as n~%/2. While we
have not been able to evaluate the second sum in
Eq. (A3) analysis of its terms for various ranges
of m and R indicates that its contribution to

(6%(n)) /a? falls off asymptotically at least as fast
as n”2, Consequently, retaining only the contribu-
tion from the two leading terms, we arrive at the
asymptotic expression given by Eq. (5).
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