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A new method of evaluating the energy distribution function of sites participating in an adsorption process
is presented. The method is based on the Wiener—Hopf technique for the solution of integral equations.
The method is demonstrated through a derivation of the distribution functions for the generalized
Freundlich and Dubinin—Radushkevi¢ isotherms, and a new distribution function relating the local
Langmuir isotherm to the Javanovic isotherm is derived. A prescription for the analysis of experimental

data is discussed.

I. HETEROGENEITY, DISTRIBUTION FUNCTIONS,
AND THE INTEGRAL EQUATION OF ADSORPTION

The first theoretical investigations of physical and
chemical processes in solids and other molecular com-
plexes are generally made on models in which the ma-
terial being considered is postulated to be uniform.
Certain parameters, coupling constants, strengths of
interaction, lattice spacings, relaxation times, etc.,
are given values which are constant in all parts of the
sample being modeled, This homogeneity postulate is
seldom satisfied in real systems. For this reason, in
refined theories, more realistic models incorporate
heterogeneities into certain distribution functions which
are used to characterize the models,

Let us suppose that the variables which, through in-
homogeneities, might extend over some range are
a=(ay, ay,..., a,); and that Q=(gy, ¢5,..., g,) Tepre-
sents variables which can be externally controlled (tem-
perature, pressure, external electric field, etc,)
while making measurements on a system of interest,
We then assume that a normalized distribution function
of the a’s, pla)=pla;, a,,...,a,), exists. Let us con-
sider the case that an observed total response function
€, (@), which is the outcome of some measurement, is
a weighted average, with weight p(a), of a local re-
sponse function Q, (@, a) of the heterogeneity param-
eters {q;}, L. e.,

%(Q)=[2,(Q, pl@)"a. &

Only in the case in which all @;’s are sharply distrib-
uted is 2, equal to Q,,

In situations in which it is impossible to measure the
distribution of the locally fluctuating variables, {a, },
the only way to obtain information on the distribution
function p(a) is to make response measurements §,(Q)
over a wide range of {®,}. From knowledge of the lo-
cal response function 2;(Q, @) for fixed @, the unknown,
pla), might be determined by solving Eq. (1) as an in-
tegral equation. An alternative course of action is to
choose some reasonable empirical form for p(a), which
contains some arbitrary parameters and to select these
parameters in such a manner as to give the best fit to
the experimental data ,(Q).
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A number of specific systems for which data exist
for a £,(Q) and for which one wishes to determine a
pla) include (a) the determination of the location of
multiple binding sites for small groups onto macromol-
ecules, ! (b) the activation energy distribution function
in biomolecules, ? (¢) radiation damage annealing pro-
cesses, ® (d) relaxation time distribution functions for
electrical response of dielectrics and mechanical re-
sponse of linear viscoelastic solids, * (e) estimation of
donor—acceptor distance distributions from fluores-
cence response,’ (f) the determination of surface area
and porosity of solids,® and (g) in adsorption studies, ™=°
In the following we discuss heterogeneity in relation to
adsorption experiments, but the methods we present
are applicable to other systems which satisfy the neces-
sary mathematical conditions, The characterization
of surfaces is vital to the understanding of surface re-
action, catalytic mechanisms, and other surface re-
lated phenomena, A powerful traditional method em-
ployed in surface studies is the measurement of ad-
sorption isotherms, i.e., the relationships between
coverage of a substrate surface by an adsorbant and the
total pressure of the ambient, for fixed temperature,
Various kinetic and statistical mechanical models as
well as semiempirical methods have been developed
for the evaluation of adsorption isotherms.”!° Most
theoretical treatments postulate a homogeneous sub-
strate surface, which rarely exists. The surface het-
erogeneity to adsorption results from crystallographic
irregularities (for example, cleavage steps, disloca-
tions, and point defects) and contamination, In poly-
crystalline materials, nonuniformity is also caused by
the exposure of a variety of crystal faces. Nonhomo-
geneous surfaces yield a spacially fluctuating potential
energy for the adsorption of chemical species,,

Such surfaces can be conceptually decomposed into
patches which are to be pictured as homogeneous (homo-
tattic) regions of dimensions large compared to atomic
spacings but much smaller than the total surface area
of the substrate. An equivalent alternative description
is given in terms of adsorption sites which are defined
as positions of potential energy minima with respect
to motion perpendicular to an arbitrary reference
plane at the site. !! Consequently, the adsorption het-
erogeneity of a surface is modeled by a distribution
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function of homotattic regions, or equivalently by a
site distribution function. The total isotherm 6, as a
function of temperature and pressure is then a weighted
superposition of the local isotherms, 6,, of the patches

€2
6, = f 8,(P, T; €)p(T; €)de, @)
€1

Fotrie de-1, @
€1

where €(= 0) is the adsorption energy, P and T are
respectively the pressure and absolute temperature,
and p(T;€) is normalized distribution function of site
energies.

The concept of adsorption on heterogeneous substrates
can be traced to the pioneering work of Langmuir who
proposed!? an expression for the total isotherm, Since
then, it has been the subject of numerous studies,
Given the experimentally determined total isotherm
6, and a theoretical local isotherms 8,, there are two
types of schemes for the evaluation of the distribution
function p: one being empirical and the other requiring
a direct integral inversion. In empirical treatments,

a plausible, parametrically dependent distribution
function is postulated, and the parameters are chosen
to yield a best fit to the experimental data. Various
functional forms for the distribution have been pro-
posed (for example, exponential,’”® Gaussian,® expo-
nential of a high-degree polynomial, ! log-normal, '°
Maxwell-Boltzmann, '8 and Poisson distributions!?), |
and numerical fitting procedures have been developed,
In the direct approach, the data (total isotherm, 8,) is
fitted by some function and the solution of the integral
equation of adsorption [Eq, (2)] is attempted for an as-
sumed form of the kernel, 8;. In particular, we men-
tion the Stieltjes'®'!? and Fourier transform methods?®in
which 6, was chosen to be a Langmuir isotherm, and
the Laplace transform method?! in which Jovanovic’s
isotherm®'® wasused, Inthis contextwe note the conden-
sation approximation method®*~2® which is a “hybrid” of
the empirical and direct approaches., This method con-
sists of replacing the kernel in the above integral equa-
tion by a function of P which has a discontinuity where
condensation occurs, thus permitting an analytical solu-
tion for the distribution function,

The inversion approach has the merit of not making
a priori assumptions about the solution of the integral
equation, hence it is a dirvect way of evaluating the dis-
tribution function. On the other hand, the inversion of
Eq. (2) can be achieved by the above methods for only a
few limited cases,
of a new technique for the solution of the integral equa-
tion of adsorption, based on the Wiener—Hopf method,
We note that while in the following we restrict our dis-
cussion to the Langmuir isotherm as the kernel, and
assume the integration to cover the entire half line
[0, ], thus requiring that the solution p belongs to the
function space L!(0, ), the method is quite easily mod-
ified to treat kernels of a more general type and arbi-
trary limits of integration, 2 We commence with a
brief description of the Wiener-Hopf method for the
solution of integral equations in Sec, I, In Sec. III,

In this paper we present the elements

we give a detailed demonstration of the method for a
few cases, to familiarize the reader with the technique.
A brief discussion on its use for the analysis of ex-
perimental data is included in Sec. IV,

Il. THE WIENER-HOPF METHOD?*73¢

Consider an integral equation on the half- line with a
kernel A(¢, s) which depends upon the difference of the
arguments

fo “he— s)pls)ds =f(t) (0<t<<o). @

When the given functions k(¢) and f(#) in Eq. (4) belong
to the classes L and L,, respectively, the solution to
the above equation can be formally constructed as fol-
lows:

(i) let us define the Fourier transform of the kernel
h to be

2= [ " et (s, (5)

and restrict ourselves to the case
H()#0 (=0 <) <o), (&)
(ii) if we perform the factorization
H0) =30,0000.(0) (=0 <x<e), (7

where 3¢,()) and 3¢_(2) are functions holomorphic, re-
spectively, in the interiors of the half-planes II, (upper)
and II _(lower) and not vanishing in the finite parts of
their respective half-planes,

(iii) then the Fourier transform p{)) of the unknown
function can by written as

o) =30, M) P[3c.0F (), (8)
where
- ® =-$tA
F() = fo A dt, 9)

and the operator P, is defined to be the principal value
integral

P+4>(>\)=L. 2w dp

o e (tm>0), (10)

(iv) Finally the function p(x) is obtained by Fourier
inversion

o= [ e=p0)an. (11)

In the following section we apply this method,

I1l. DISTRIBUTION FUNCTIONS WITH A LANGMUIR
KERNEL

In this chapter we assume that the local isotherm 6,
is the well known Langmuir isotherm!?+3!

6, (P, T;€)=[1+P'a(T) exp(- € /RT)], (12)

where the meaning of a(T) is clear from a statistical
mechanics derivation of the Langmuir isotherm, 3!'3
The integral Eq, (2) reads now as
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8,(P, T) = fﬁ [1+ P 'a{T) exp(~ e /RT}[ ple}de. (13)
0

The change of variable
Pla(T)=¢® (0<y<«), and x=€/RT, (14)
puts Eq. (13) in the Weiner—Hopf form

ola(D e, T)-RT [ [1+exply- o] p(0dr.  (15)
(1]

Now, we perform the steps (i) and (ii) of the Wiener-
Hopf procedure outlined in the previous section. The
Fourier transform of the kernel k{u)

h(z) =[1+ exp()], {16)

is, when 0<Imk<1%
H(k) = f hlw) exp(- iku)du = f [1+o] ¥ o
-c0 0

=T(~ iR T(1 + ik). (17
where I'(z) is the gamma function of z.

Noting that I'(- k) has poles at k=il (1=0,1,2,...)
and T'(1+ék) at k=i(l+1) (I=0,1,2,...) oné can achieve

the factorization of H(k)™! with

3, (k) =[expg(R) |/T{- ik), {(18a)
and

30 (k) = {exp[- ¢ (k) ]}/T(1 +ik). (18b)

The function ¢(k) is chosen by requiring that 3¢, (%) ex-
hibit an algebraic behavior for large k. Using Stirling’s
formula for InI'(z) we obtain

¢ =ik, (19)

We consider now several choices of the total adsorption
isotherm,

A. Generalized Freundlich isotherm

The generalized Freundlich isotherm was suggested
originally by Sips'® as an alternative to the Freundlich
equation, which does not indicate saturation at high
pressures. This isotherm can be written as

8,(P, T)=[1+ P a(T)]® O<c<1. (20)

Using the transformation of variables in Eq. (14), one
can write the one sided Fourier transform |Eq. (9)]
of 8, in Eq. (20) as

O, (k) = J: [1+e*]™ exp(- iku)du = Jlm (1+o)°v**1qp. (21)

The above expression is identified as the integral rep-
resentation of the hypergeometric function®*

0, (k) =[c+ ik  F(c, c +ik; c+ ik+ 1; - 1)[Im(k) > c),

(22)
where
r'(c) = 2" T (a+n)T(b+n)
Fla, b ¢; 2) =131 (0) ; n!T(c+n) (23)
Thus we obtain
U T(e+n)
SH (&) = I‘(c) Z ntlc+n+ik)” (24)

o) = sin{rc) exp{- cx) [1
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FIG. 1. The contour of intergration used in obtaining the pro-
jection P,, in Eq. (25).

The projection P,, defined by Eq. (10), can now be
performed using the contour shown in Fig, 1, yielding

exp(~ ir) (-1'T(c+n)

T(T(1+0) &3 nlle+n+in)” (25)

P,[3c.(06,0)] =

We now construct the Fourier transform of p [see Eq.
(8)] by multiplying Eq. (25) by 3¢,(\), given in Eq. (18a),
and performing the Fourier inversion [step (iv), Eq.

1D}

exp(ixx)dx
(c +n+iAT{1+A)T{(—in)

(26)

o) = E (- 1)"I‘(c+n

RTF(C)

Closing the contour in the upper half-plane we get

p(9) =[RTT(0)] Z( e (e (27)

Using the relation

I'()T(1-x)= , (28)

T
sin(rx)
we can rewrite Eq. (25) in the form

(- 1" exp(— nx)
ri- C)Z—'I‘[l (c+n)]]‘

n=1
(29)
We note now that the term in square brackets in the

above equation is the asymptotic expansion of the func-
tion

mRT

exp(ex) exp(x) - 1]°. (30)

By replacing the sum in Eq. (29) by this expression
and using Eq. (14) we obtain

p(e) =3I (v /RT) - 1], (31)

This result is identical to the one derived by Sips using
the Stieltjes transform.'®

B. Dubinin-Radushkevich isotherm.

The Dubinin—Radushkevich isotherm is given by®
8,(P, T) = exp{- B[RTIn(P,/P) F}, (32)

where P, is the saturation vapor pressure of the ad-
sorbed gas at the ambient temperature 7, and B is a
constant. Substituting for P from Eq. (14) and defining
A=B(RT) and C=In[P,/a{T)] we obtain
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8,(y, T) = exp[— A(C+y)?]. (33)
The one-sided Fourier transform of Eq. (33) is
o, (k) = ~4¢? f exp[ - Ay? — y(2CA + ik) )dy. (34)
0
Using a known definite integral® we find

J‘”x"“ exp(- Bx? ~ yx)dx = (20)™/2exp(y*/88) T ()D_,(v/V28);
0

ReB>0, Rev>0, (35)

and the relation between the parabolic cylinder func-
tion D_,(2) and the error function erfc(z),

D_,(2) = (n/2)Y2 exp(z 2 /9 erct(z /2V?), (36)
we get for©, (k) the following expression:
iy
6,(k) =5(n/A)V? exp[-Ac2 +(2Lf;’—k)]
x erfc[(2CA +ik) /2AY?]. (37

Using 3_, given by Eq. (18Db), the projection P, can
now be performed yielding

P{5e.(0) 8, (0)]

)2
_f exp[—AC2+—(g§24+—m] erfc[2CA + i) /2AY2]

2T (1 +4))

PN

(38)
Multiplication by 3, (3), given in Eq. (18a), and Fou-
rier inversion yield after some algebraic manipulation
the following inverse Laplace transform expression
for p(x),

_exp(-AC? - 2CAx)

pk) WART
+i 04C*
X f sin[ 2n(VAu - CA) Jexp(u? + 2VAux)erfc(u)du,
-fosC!
(39)
where C’' = CAY2,
Using the known Laplace inversion formula®
£ e*? erfc(a¥?p)] = (na)"V2 exp(- t2/4a), (40)
we get
ple) = (nRT)™* exp[An* — B(CRT)? - 2BCRTe - Be?]
X sin[27BRT(C/RT +€)]. (41)

When po=a(T), C=1In[py/a(T)] vanishes and
ple) = (nRT)* exp{- B[e? - (7RT)?] } sin(27BRTe), (42)

which is identical to the result obtained by the Stieltjes
transform technique, *® and by another method, %

C. Jovanovic isotherm

Recently, Jovanovié proposed a new isotherm equa-
tion, 2223 In the adsorption model considered by Jo-
vanié, two new types of collisions are taken into ac-
count in addition to the processes which lead to the Lang-
muirisotherm. These additional processes are collisions
between bulk and adsorbed molecules. This isotherm
was employed recently?! in the analysis of experimen-

tal data of the adsorption of argon on rutile. ** The
distribution function obtained in the analysis based on
a Jovanovié local isotherm differs from those obtained
in previous studies based on a Langmuir local iso-
therm, **'4! These differences were attributed® to the
differences in the physical mechanisms leading to the
two isotherms., These involve adsorption sites as-
sociated with a low adsorption energy which, though
formally occupied, are, in fact, free because of the
high energy of the molecules covering them, In the
present section we show that the Jovanovi¢ isotherm
can in fact be derived from Langmuir’s local isotherm
via the integral equation for heterogeneous adsorption.
In the following we derive the corresponding distribu-
tion function,

The Jovanovié isotherm can be written as
9,(P, T;€") =1 - exp[ - (P/a) exple’'/RT)], (43)

where o depends on temperature. As can be shown

by an expansion of Eq. (43) in powers of the pressure
and taking the limit P-~0, o is the proportionality con-
stant in Henry’s law. By changing variables according
to Eq. (14) we can write the one-sided Fourier trans-
form of Eq. (43) as

0,(k) = J: {1 - exp[ - C exp(- u)] } exp(- iku)du

00 1
= J exp(~ iku)du - f v* lexp(- Co)dv=I,-1,,
o

0
(442)
where

C(T)=a(T)/a(T).

We make use of the following known*? integral repre-
sentation of the incomplete gamma function y(«, g):

(44Db)

f x¥t exp(— px)dx= uy(v, uu); (Rev> 0), (45)
0

which yields
I, =C*(ik, C); (Imk<0). (46)

The function y(a, x) is in turn related to the degenerate
hypergeometric function ®(q, b; 2) by*

Ya, x)=§i ®(a, 1+a; - %), (47)
where
L%~ Da+n)T(B)2"
®la, b; 2) = MZD T(@r®+mn! ° (48)

Finally we get for O, the following expression:

Oy (k) = -i AC" ik <o), (49)

nl(n+ik) '
Following the steps of the Wiener—Hopf procedure and

using Eqs. (8)-(11), (18) and (49) we obtain the follow-
ing inversion formula:

_ g~ {=1°C" £ expliax)da
plx) =~ (RT) 1; n! v A+ D= AT +80)

(50)
The integral in the above equation can be written as
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FIG. 2. The distribution function p(e), relating the Langmuir
local isotherm to the Jovanovié isotherm. Curves are shown
for three values of C [Eq. (44) taken as a constant, independent
of temperature (a, C=1; b, C=0.25; ¢, C=4.0). For each
value of C, the distribution function for several temperature
is shown.
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el +1 © y2kh+l .

2=0 (51)
After some algebraic manipulations, the normalized
distribution function which relates the local Langmuir
isotherm to the Jovanovi¢ isotherm can be written as

ple) = N(RT) {exp| - rexp({- € /RT)]
- exp[~ s exp(- ¢/RT|}, (52)
where the normalization constant N is given by
N=[Ei(») - Ei(s) ], (53)

where Ei(x) is the exponential integral function and
r=Cexpln), s=Cexp(-m). The above distribution
function for several values of the temperature is shown
in Fig, 2.

IV. ANALYSIS OF EXPERIMENTAL DATA

In a usual isotherm study, the coverage 6,(P, T) is
recorded as a function of the total ambient pressure
for constant temperature T, Given such isotherm data,
we can find a least-square fit to it, ¥ defined by the
coefficient C,(7),

6,(P. TV =3 C,(T)P". (54)
n=1

Note that we start the series at #=1 in order to satisfy
Henry’s law. A simple transformation of variables
[Eq. (14)] yields

6:(5, D=5 (D) C,(T)e™. (55)

n=1
The one sided Fourier transform of Eq. (55) can be
written as

O, (k, T)= 3, la(D)]" 7%"%—) (n>1mk), (56)
n=1

Using the factorization of the transform of the Langmuir
kernel [Eqs. (18)] and performing the operations in-
dicated in Eqs. (8), (10), and (11) we find the following
inversion formula for the distribution function p(x)

exp(irx)dx
o R+ DT (=T + D)’
(57)
This integral is the same as the one in Eq. (50). Fi-
nally we get

plx) = (RT)'li la(D)]'C(T)
n=1

M
p(€) = N(RTY™ 3 {a(T) ['C,,(T) sinh(nn) exp (ﬂ) ,
n=1

RT
. - (58)
where N is a normalization factor equal to
o -1
N= {2 nwa(T)I" C (T) sinh(mr)} . (59)
=

The average energy associated with this distribution
function is given by

- M
€= f eple)de =NRT E n2[a(T)]" (T) sinh(nm)  (60)
0 n=1

From Eqs. (54), (58)—(60) it is seen that the coeffi-
cients C,(T) [Eq. (54)] determine the distribution func-
tion, Furthermore, distribution functions relating the
Langmuir isotherm to other isotherms [like the one de-
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rived in section IIIC, relating the Langmuir and Jo-
vanovié isotherms, Egs. (52) and (53)] can be incor-
porated to achieve an analysis based on local isotherms
other than the Langmuir one, A detailed discussion

of the application of the method to the analysis of ex-
perimental data is reported elsewhere, ¥
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