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The conventional approach to surface structure determination by analysis of low-energy electron diffraction
(LEED) consists of comparison between experimental intensities and intensities calculated on the basis of a
model of the diffraction process and a trial model of the surface structure. Although this model calculation
approach has been used with some success in the case of simple structures, it is unlikely that it can be easily
extended to more complex systems unless a reasonable approximation to the structure is known or can be
determined by another method. In this article we further describe and evaluate the transform-deconvolution
method, which is in essence an adaption to LEED of the Patterson function method of x-ray crystallography,
in which direct use is made of the experimental data without prior assumption of a model structure. Within
the approximation of single-scattering theory it is shown that the Patterson functions of LEED intensities
consist of sums of convolution products of structural and nonstructural terms from which the structural
parameters can be recovered via a deconvolution process. Procedures are described for tackling the problem of
nonuniqueness, which results from the limited amount of data available from a LEED experiment, and problems
associated with the effects of multiple scattering. The results of application of the transform-deconvolution
method to the analysis of LEED intensities from Cu(100), Ni(100), Al(111), and Al(100) are presented.
Consistent values for the surface interlayer spacings are obtained from the analysis of a number of intensity

spectra in each case.

L. INTRODUCTION

In the last decade the introduction of a wide var-
iety of new experimental techniques has greatly
extended the capability for obtaining detailed in-
formation concerning surface properties and ad-
sorption phenomena.!’?> The recent use of ultra-
violet and x-ray induced photoemission spectro-
scopies in well-controlled surface experiments®*
has led to a redirection of emphasis from atomis-
tic to electronic properties. However, the pres-
ent, general lack of accurate structural information
is an impediment to a detailed understanding of
the changes in electronic configuration caused by
the presence of a surface or caused by the ad-
sorption of foreign atoms.

Low-energy electron diffraction® (LEED) still
appears to be the most likely method for accurate
determination of surface structure. Recent model
calculations of LEED intensities have shown en-
couraging signs of approaching agreement with ex-
perimental measurements in the case of some sim-
ple structures.®”” These improvements together
with the use of perturbation schemes’ for efficient
description of multiple-scattering processes ap-
pear to indicate that the main ingredients of the
theoretical treatment can now be handled in a fair-
ly accurate and practical way.

The major drawback of the model-calculation
approach, however, is the need to carry out an
exhaustive search of parameter space in order to
obtain best agreement between calculated and ex-
perimental LEED intensities. At the present time,
the computational requirements of dynamic model
calculations are too large to permit a proper vari-
ation over the model parameters analogous, for
example, to least-squares refinement methods of
x-ray crystallography. In addition, the comparison
between experimental and calculated intensities is
generally carried out in a rudimentary fashion and
is made uncertain by the lack of well-defined
criteria for assessing the extent of agreement.

The general inability to perform a complete par-
ameter variation inevitably brings into question
the uniqueness of structure determination. This
problem is compounded by the relative paucity of
data available from a LEED experiment as com-
pared to an x-ray diffraction study. Some of the
conflicting structural interpretations which have
appeared in the recent literature,®® and which have
been the source of some confusion and controversy,
can be clearly attributed to the occurrence of

false local maxima in (hypothetical) plots of “good-
ness of fit” in parameter space.

In the analogous case of bulk structure determin-
ation via x-ray diffraction, model calculations are
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used in structural refinement after good approxi-
mations to the structure have been found using one
of the direct methods of analysis, which are based
on inversion of the experimental data without prior
assumption of a structural model. It seems to us
quite evident that extension of LEED analysis to
more complex surface structures is unlikely to be
of wide use unless analogous direct methods can
be similarly applied to yield first approximations
to the surface structure.

In recent papers,'°!* we have described the prin-
ciples of a direct method for analysis of LEED
intensities which is related to the Patterson'®
function method of x-ray crystallography. As in
the x-ray case, the method takes a more approxi-
mate view of the diffraction process than can be
achieved in a dynamic model calculation. Never-
theless, it will be argued on the basis of analysis
of experimental data that the method is in fact
capable of yielding a good approximation to the
surface structure.

In Sec. II we discuss the Patterson functions of
LEED intensities and show that these contain sums
of convolution products of structural and nonstruc-
turalterms. InSec. III, the transform-deconvolution
method for retrieval of structural information from
the Pattersonfunctionsis reviewed, together witha
more detailed account of its practical implementation
than has been given hitherto, including important
new refinements. Application of the method to the
analysis of experimental LEED data for Cu(100),
Ni(100), Al(111), and A1(100) is presented in Sec.
IV. The extension of the method to the analysis of
overlayer systems is discussed in Sec. V. Finally,
conclusions and future directions are considered
in Sec. VI.

Il. PATTERSON FUNCTIONS OF LEED INTENSITIES

In the case of x-ray crystallography, the Patter-
son function is obtained by Fourier inversion of the
diffracted intensities!$'¢

P(xyz)= Z Z Z Ih“e-Zri(hxokyuz) , (2.1)
[

where I,,, is the intensity of the ikl reflection. In
the absence of anomalous dispersion, Friedel’s
law, I,,,=I3;3, applies and so Eq. (2.1) reduces to
a cosine transform and P(xyz) is therefore a real,
even function. In the case of single-scattering it
has been shown!? that P(xyz) is given by the self-
convolution of the real-space scattering potential.
Thus peaks are found in P(xyz) at positions de-
termined by all interatomic vectors within the unit
cell; the vectors being translated to a common
origin. The real-space structure is obtained by
forming the convolution square root of P(xyz) .'®

In the case of LEED, the third Laue condition is
not properly established due to the strong inelastic
scattering of low-energy electrons in solids. The
intensity of an hk beam varies continuously along
the I direction of reciprocal space, correspond-
ing to the surface normal direction. Thus Eq. (2.1)
must be rewritten as

P(xyz)= Z Z (f e (S)e'gﬂ‘uds> e-zwi()nx+ky)’

v 2.2)
where 27s is the normal component of the diffract-
ed wave vector. Friedel’s law does not apply, so
P(xyz) is, in general, complex.'’

As we have discussed previously,'®°~** reduced
forms of the three-dimensional Patterson function
P(xyz) can be conveniently used in the analysis of
LEED intensities. In this article we focus upon
the use of the one-dimensional line projection
P(z), which in the x-ray case contains peaks at po-
sitions corresponding to all interatomic vectors
projected on to the z axis and translated to a com-
mon origin. In the case of LEED, P(z) is given by

P(z)=f Ioo(s) e=27i5% ds | 2.3)

where z is the surface normal direction and 7,,(s)
is the intensity of the specular diffracted beam.
From considerations of symmetry'” I,,(s)=1,,(-s)
and therefore P(z) is obtained as a real, even
function given by

P(z)=2f Too(s) cos2usz ds . (2.4)

The physical significance of the P(z) function ob-
tained by Fourier inversion of specular-beam
LEED intensities has been discussed on the basis
of analytical Fourier transformation of expres-
sions for both kinematic single-scattering inten-
sities,''~'* and for dynamic multiple-scattering in-
tensities.’® In the following we briefly reproduce
the derivation for the case of kinematic intensities
since this result forms the basis for the trans-
form-deconvolution method. The additional con-
sequences of multiple scattering are considered
later.

We take as a model structure the case of an ad-
sorbed layer with scattering factor f(s), taken to
be renormalized with respect to adsorbate cover-
age, at a distance d, above the outermost plane of
the substrate. The substrate scattering factor is
fs(s) and the uniform interlayer spacing in the sub-
strate is d;. The atomic scattering factors are
taken to be renormalized with respect to thermal
vibrations by multiplication of the rigid-lattice
scattering factors by a Debye-Waller factor.
Attenuation of the electron beam inside the solid
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by inelastic processes and by destructive interfer-
ence with elastically scattered electrons is simu-
lated by assuming an energy-independent layer
attenuation exponent p. Defining attenuation fac-
tors a,=e Mo/**® and a,=e Ms/*® where 6 is

Ioo(s)=

— 2
fo(S)+f,(S)aoZ aY ei(ﬂowﬂs;\
v=0

=Fo(S)fE(s) +f X(s)f s (s)ad (1 =aF)™

the angle of incidence, and defining phase
angles B,=2msd, and B, =2msds, then the dif-
fracted intensity in the specular beam can be writ-
ten in terms of a sum over the amplitudes scatter-
ed from each layer

X Y al(eBs v et 1) v, ) o[ Fo()fE ()e Pt B +f (s)fg(s)e! PO, (2.5)

v=0 v =0

where the asterisk indicates complex conjugate.

Ignoring for the moment the fact that experiment-
al intensities are available only for a truncated
range of s, Fourier transformation of 7,(s) ac-
cording to Eq. (2.4) yields

P(2) =P(2) * Fo(2) + a3 P(2)* F(2)
+P,o(2) ¥ Fyo(2) +P o (2)* Fo,(2) , (2.6)

where * denotes the convolution operation. P(z),
P, (2), Pso(z), and P (2) are given by

Py(2)=6(z),
Py(z)=(1-qa2)™ i: oy [6(z = vd,) + 8(z + vd) - 5(2)]
v =0
- (2.7)
P,o(2)=a, Z a¥ §(z +dy+ vdy),

v =0

Py (2)=a, Z alb(z —d, - vd,),
v =0

where 6(x) is the Dirac delta function. F(z),
F(2), F,,(2), and Fy(z) are, respectively, the
Fourier cosine transforms of f(s)f*(s), fs(s)f*(s),
F¥(S) o(s), and f¥(s)f, (s).

Two particular cases may be obtained from Eq.
(2.6). For a clean substrate with first layer spac-
ing d, different from subsequent spacings d;,

P(2) =[P y(2) + @2 P4(2) +Py4(2) +P(2)] * Fo(2) .
(2.8)

For a clean substrate with uniform layer spacing
ds,

P(2)=Pg(2)* F4(2) . (2.9)

Thus in this last most-simple case the P(z) func-
tion consists of a single set of 5 functions position-
ed at multiples of the interlayer spacing d,, con-
voluted with the Fourier transform of the modulus

r

of the atomic scattering factor. The 6 function
amplitudes decay exponentially with increasing |z |
due to the factor a) associated with the attenua-
tion of the incident and diffracted beams in the
crystal.

In the analysis given above it has been assumed
that I,,(s) is known for all s. In a LEED experi-
ment, however, the accessible range of s is limit-
ed to positive values and in practice is further
truncated. This truncation has crucial consequenc-
es as discussed below.

The minimum (positive) value of s is defined by the
inner potential of the solidas s, = (1/7)(2m/K)!/2V3/2,
since electrons incident upon the solid at zero
energy increase in energy by V, upon entering the
solid. In practice, s, is usually larger than the
value given above because of the difficulty in work-
ing with electron beams of energy less than about
10 eV. The maximum value of s, s, is usually
chosen arbitrarily by the experimentalist, but in
general, the choice is very much influenced by
the strong attenuation of diffracted intensity with
increasing s due to the decrease in scattering
factor, and by the desire to retain sensitivity to
the surface layers.

Thus in practice the Fourier integral of Eq. (2.4)
is truncated

2
P(2) =2f I,,(s)cos2nszds . (2.10)
Sy
Defining a box-car window wg according to
wp(s)= {1’ sislsl<s,, (2.11)
0, elsewhere,
then Eq. (2.10) can be written
P,(z)=2f ws($)oy(s) coS2rsz ds . 2.12)
[\

Application of the convolution theorem to Eq. (2.12)
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yields

Pr(z)= (Zfz cos2msz ds)* <2[ I,0(s) cos2msz ds),
31 0

i.e.,
Pr(2)=Wg(2) *P(2), (2.13)

where

3.
WB(z)=2f ’ cos2nszds
S1

_sin27s,z — sin27s, 2

s (2.14)

Thus the expressions for P(z) given in Eq. (2.6),
(2.8), and (2.9) must be convoluted with Wg(z) in
the case of a truncated range of s. The equations
can be applied directly if the Fourier transforms
of the scattering factors are understood to be
truncated, for example,

F,(z)=2 f'z fs (sS)f¥(s)cos2nszds . (2.15)

The equivalent derivation of P(z) by Fourier
transformation of I, (s), or by convolution of a set
of delta functions P,(z) with the truncated Fourier
transform F, (z) of an atontic scattering factor is
illustrated in Fig. 1 for the case of a clean sub-
strate with uniform layer spacing.

P(z)

loo(s)
FOURIER
-~
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FIG. 1. Fourier transformation of calculated single-
scattering intensities for the specular diffracted beam
from a clean, uniform substrate and, equivalently,
formation of P(z) by convolution of a set of delta func-
tions at multiples of the interlayer spacing with the
truncated Fourier transform of an atomic scattering
factor. Parameter values used in the calculations were
appropriate for A1(100). (a) I y(s), calculated intensity
spectrum. (b) P(z), Fourier transform of (a). (c)
Fg4(2). (d) 6-function set.

IIl. TRANSFORM-DECONVOLUTION METHOD

As described in Sec. II, in the single-scattering
approximation the Fourier transform P(z) of spec-
ular-beam intensities contains convolution prod-
ucts of functions of the required structural param-
eters with truncated Fourier transforms of atomic
scattering factors. The aim of the transform-de-
convolution method is to perform a deconvolution
of the structural and nonstructural content of P(z).

Several difficult problems must be overcome in
carrying out the deconvolution. In the case of a
one-component system (clean substrate), for which
in single-scattering theory the structural and non-
structural variables are separable, the major
problem is the absence of a unique mathematical
solution to the convolution equation owing to the
truncation of the data. This problem is intensified
by the additional effects of multiple scattering in
mixing the variables. In the case of a multicom-
ponent system (e.g., substrate plus overlayer), the
structural and nonstructural variables in general
are not separable so a unique mathematical solu-
tion would not exist even in the absence of trunca-
tion.

In the following, procedures for tackling the
above-mentioned difficulties are described. The
simpler case of a one-component system is con-
sidered first. Modifications and further approxi-
mations which are required for the case of a mul-
ticomponent system are discussed in Sec. V.

For a clean substrate, allowing for the possibil-
ity of expansion or contraction of the interlayer
spacings near the surface, Eq. (2.8) can be gen-
eralized as

P(Z)=PD(Z)*FS.§(Z); (31)

where P(z) contains sets of delta functions assoc-
iated with each different interlayer spacing. Given
a knowledge of the inner potential V(s), P(z) is ob-
tained by Fourier cosine transformation of a spec-
ular-beam intensity spectrum. F, (z) is the cor-
respondingly truncated cosine transform of the
modulus of the atomic scattering factor f (s). The
rigid-lattice scattering factor fRL(s) can be ob-
tained from the partial-wave expansion

-icosé
27ns

o 2
,Rl(s)=’ ST @LA1)(e - 1)P,(cos )| |,
I =0

(3.2)
where §; is the Ilth partial-wave phase shift obtain-
ed by integration of the radial Schrbodinger equa-
tion, using a model potential. In the equation, 6
is the angle of incidence, ® is the diffracted angle,
and P,(cos®) is the Ith Legendre polynominal. To
a first approximation the effect of thermal vibra-
tions can be included by multiplying the rigid-lat-
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tice scattering factor fR(s) by a Debye-Waller
factor

fo(8)=fRY(s) e 1) (3.3)

where

3h® 1 TV (®0 «x
o (L 4
v(s) 2Mkp6p [4 +<6D> fo ef -1 dx] @4

and ©, is an effective Debye temperature.

Thus ignoring for the moment any consequence
of multiple scattering and any uncertainties in
Vo(s) and f (s), determination of interlayer spacings
requires solution of Eq. (3.1) for P, (z) given P(z) and
Fy(z). Unfortunately,asindicated above, a unique
solution of Eq. (3.1) requires a knowledge of
I,,(s) for all s. There are therefore an infinite
number of possible solutions for P,(z) since an
infinite number of functions can be constructed
equal to Jy,(s) in the measured range but arbitrar-
ily different outside that range.

The problem of nonuniqueness in the interpreta-
tion of limited experimental data is rather com-
mon. It is evident that selection of the correct
physical solution in such a situation requires that
the solution algorithm be constrained by incorpor-
ation of g priori known information.

The main feature of the correct physical solu-
tion, Pp(z), in the single-scattering approximation
is that it contains vector sets of 6 functions, as
derived in the previous section. Thus in our first
attempt'® to implement the transform-deconvolu-
tion approach for experimental data analysis, for
clean Ni(100), the procedure adopted was to con-
volute trial sets of 6 functions with F,,(z) accord-
ing to Eq. (3.1) and compare the results with the
experimental transform P(z). Reasonable cor-
respondence was achieved between experimental
and calculated P(z) functions for a single set of 6
functions at positions close to the bulk interlayer
spacing in Ni(100), indicating that the effects of
multiple scattering in the experimental intensities
did not interfere too severely with the analysis. It
was evident, however, that manual variation of the
parameters characterizing the sets of 6 functions,
and visual comparison of the experimental and
calculated P(z) functions would be an inadequate
procedure in the case of more complicated sys-
tems. In addition, in this first work the atomic
scattering factor was crudely described using s-
wave phase shifts only.

In more recent papers,''~!* concerned with the
analysis of experimental data for A1(100), a de-
convolution procedure based on a relaxation method
attributed to Southwell'®:2° was used to directly
solve Eq. (3.1) for Pp(z). Although the procedure
does not involve prior assumptions concerning the
general nature of P,(z), its construction is such

that fortuitously it usually leads to solutions of the
required form. In particular, it always correctly
produces a solution whose maximum component is
a delta function at the origin [see Egs. (2.6)-(2.9)].

In general, however, the absence of built-in con-
straints in the Southwell method means that the
problem of nonuniqueness is not sufficiently ad-
dressed. Therefore in the analysis of experiment-
al data given in the following section we have used
a new deconvolution scheme which in essence com-
bines our two previous approaches. As the South-
well method constitutes a first step in the refined
procedure it is convenient to briefly outline its
essential features. A more detailed account is
given elsewhere.'

With the functions evaluated on a discrete grid
of z, Eq. (3.1) represents a system of linear
equations. The Southwell method is an iterative
relaxation scheme, for solution of such a system,
in which the solution vector is obtained by adjust-
ing the value of one component only in each itera-
tion. A vector of residuals is defined by

Pres (2) =P (2) =P p(2) * Fe(2) . (3.5)

The solution P (z) is obtained by iterative reduc-
tion of the residuals

Oth iteration: P =P(z): P (2)=0
vth iteration: P{ps =P {i5t(2) — Ap(2') * Fyy(2);
PP(2) =Py~ (2)+Ap(2). (3.6)

In the vth iteration, the component of P{’~(z) to
be adjusted is determined by the position z’ of the
maximum component of P{;5")(z). The amplitude
Ap(z’) of the adjustment is then determined from
the approximation

P (2) = Ap(2')F,,(0), 3.7

which amounts to taking the dominant term only
of the discrete representation of the convolution
integral of Eq. (3.1).

The progress of the Southwell scheme is illus-
trated in Fig. 2, based on the P(z) function formed
from calculated single-scattering intensities for a
clean substrate consisting of unit scatterers with
uniform interlayer spacing. For the case of unit
scatterers F(z) is equal to Wy(z), the sinx/x
function given by Eq. (2.14). As shown in the
figure, in the first iteration the truncation oscil-
lations associated with the origin peak of P ,(z)
are removed from the residual. Accordingly, the
possibility of correctly locating the next delta
function of Py(z) is much enhanced.

In our previous applications''-!? of the Southwell
method it was found that deconvolutions of P(z)
functions of experimental intensities contained
consistent vector sets of delta functions, which
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FIG. 2. Illustration of Southwell deconvolution scheme,
using P (2) function of calculated intensities from a uni-
form, point lattice with layer spacing 2 A. In the zeroth
iteration the residual function Pggg(2) is set equal to
P(z). The maximum value of Pﬁ’ s(2) occurs at z=0, so
a 6 function is placed at the origin in the solution P%) ),
with amplitude P{l(2)/F,(0). Convolution of P (z)
with F g (z) and subtraction from Pg’%s (2) yields P{{lqz).
The maximum value of Pgés(z) occurs at z=2 A soa 6
function of amplitude P{)s(2.0)/F ;(0) is placed at this
position in P(g (2), and so on.

could be related to the surface structure, together
with apparently random noise peaks. It was con-
cluded that the noise peaks could probably be at-
tributed, at least in part, to errors in description
of the atomic scattering factor and thermal vibra-
tions. A disadvantage of the procedure was that
“signal” and “noise” peaks could not always be
unambiguously distinguished, thereby creating
some uncertainty in attempts to maximize signal
to noise by variation of the values of the inner
potential and Debye temperature used in the analy-
sis. A related, practical difficulty was the need
to carry out the analysis on a discrete grid of z.

In the light of our experience in applying the
Southwell method we have evolved a considerably
refined procedure described below. The main
features are as follows:

(i). The convolution equation [Eq. (3.1)] is mod-
ified to explicitly account for the occurrence of
errors in the input to the analysis and in a rough
way to simulate the effects'® of multiple scattering
by including a noise component P y(z) in the solu-
tion

P(2) =[P p(2) +P y(2)] x Fys(2) . (3.8)

(ii). The solution algorithm is constrained to
produce vector sets of delta functions, Pp(z), and
random noise, Py(z), which are unambiguously
distinguished.

(iii). The interlayer spacings are no longer con-
strained to fall on a discrete grid.

(iv). A variation over the inner potential and an

effective Debye temperature is carried out to
maximize signal to noise in the deconvolution.
The output values of V, and ©, are constrained to
lie within physical bounds.

The main points of an algorithm incorporating
these features are listed below:

(i). After addition of a first guess for V, to the
energy scale, the experimental intensities are in-
terpolated on to a uniform grid of s typically
0.02 A-'. P(z) is then obtained, by numerical
Fourier transformation of the intensities, on a
uniform grid of z, with increment typically 0.05 A
and range 0-10 A. F,(z) is obtained by Fourier
transformation, over the same range of s as the
intensities, of a calculated scattering factor which
includes a first guess for ©,. The scattering fac-
tor itself is typically calculated using 14 phase
shifts derived from a model potential for the atom-
ic species in question.

(ii). The Southwell deconvolution scheme is
used, but is terminated after the first 2—4 itera-
tions, yielding first approximations to the inter-
layer spacings, d{°; to the layer attenuation ex-
ponent u(°), calculated using the relative ampli-
tudes of the delta functions; and to a scaling con-
stant ¢(®) .

(iii). Based on d;, u, and ¢, a complete Pp(z)
function is constructed using the analytical forms
given in Eq. (2.6)=(2.9). Pp(z) is convoluted with
F,,(z) to give

PX(2)=[PP(2) +P{(2)] » Fyl2), (3.9)

where P y(z) is an arbitrary function constructed on
a uniform grid of z, with increment typically 0.1
A and range 0-10 A. P,(2)=0 for all z in the zero-
th iteration.

(iv). The P(z) function derived from the experi-
mental intensities is compared to the calculated
function via an error indicator

RO=F [P@)-PRGI/ T [PE)] . (.10

(v). Steps (iii) and (iv) are iterated with a vari-
ation over d;, 1, ¢, and Py(z) until R <0.1%.

The minimization of R is performed using a con-
jugate-gradient algorithm which provides the val-
ues of dfV), u™, ¢ and P{)(z) for the first and
subsequent iterations. We emphasize that in the
zeroth iteration, the values d,*, n‘®’, and ¢©@

are derived from the experimental data via the
Southwell method with no a priori structural as-
sumptions being made.

In practice, it is convenient to divide the varia-
tion procedure into two stages. Firstly, d;, u, and
¢ alone are varied, with Py(z)=0, until a minimum
value of R is obtained (typically about10%). The
values of d; are subject to continuous variation.
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Accordingly, F,(z) must be interpolated to an ap-
propriate uniform grid of z, based on the values of
d;, in order to perform the convolution of Eq. (3.9)
and obtain P_(z) on the same grid as P(z). In the
second stage Py(z) is varied, but with no further
variation over d;, u, and c¢. This second stage is
arbitrarily terminated when R <0.1%, at which
point P y(z) has for all practical purposes con-
verged.

Typically the first and crucial stage of the vari-
ation procedure involves variation over three-five
parameters depending upon the number of different
values of d;. Construction of the noise component
in the second stage involves variation over 101
parameters for the typical grid of z referred to
above.

(vi). Finally, steps (i)-(v) are iterated with an
outer variation over V, and @, until a maximum of
signal to noise is obtained in the deconvolution.

In interpreting the results of step (ii), we have
typically restricted consideration of the number of
different interlayer spacings d; to ¢ <3, which is
justified in general by the limited penetration of
low-energy electrons into solids. In practice, in a
particular analysis of a given experimental inten-
sity spectrum, it is convenient, although not es-
sential, to definitely constrain the value of i. Thus
the algorithm is constrained to produce a solution
with a single interlayer spacing, or with first lay-
er spacing different from subsequent uniform layer
spacing, or so on. The results of different analys-
es based on these different, general structural
models are evaluated in terms of resultant signal
to noise.

The procedure outlined above is based on the

4o+ 120+

L ' L L
0 10 20 30 L0 50

d(A)

FIG. 3. Signal to noise vs d, the uniform interlayer
spacing in the A1(100) surface. Plot constructed from
many deconvolutions of the P(z) function of an intensity
spectrum for §=10°, in which d was held fixed. All
deconvolutions were carried out with fixed V;=16.6 eV
and ®,, =369 °K. Inset shows the main peak at 2.01 A on
an expanded scale of z.
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FIG. 4. Signal to noise vs V for fixed ®, =380 °K.
Variation of d withV ; is also shown. Again based on
data for A1(100), 6=10°.

proposition that errors in the input to the analysis
and the effects of multiple scattering can be rea-
sonably approximated by including a noise com-
ponent in the deconvolution, and that the best ap-
proximation to the correct structural parameters
is obtained from a deconvolution corresponding to
a local maximum of signal to noise. Evaluation of
the procedure must rest upon the results of experi-
mental data analysis. For this reason we have con-
centrated to date upon the analysis of diffracted
intensities from clean metal surfaces whose first
interlayer spacings are believed, from the results
of dynamic model calculations, to lie within +10%
of the bulk values. Apart from requiring sensible
output values of the structural parameters, how-
ever, additional consistency checks can be applied.
In particular, reasonable output values of the non-
structural parameters, V,, ©p, and p must be ob-
tained. This criterion is used to discriminate be-
tween deconvolutions corresponding to different
local maxima of signal to noise. In addition, analy-
sis of intensity spectra taken for different angles
of incidence and azimuth must produce internally
self-consistent results.

Since the procedure involves a parameter varia-
tion to maximize signal to noise, S/N an obvious
practical requirement is that plots of S/N versus
both the structural and nonstructural parameters
should exhibit well-defined maxima. To dem-
onstrate that this is in fact the case, plots of
S/N vs d, V,, and ©, are shown in Figs. 3-5, re-
spectively, from an analysis of an experimental
intensity spectrum for A1(100). In these plots and
in the analyses described in the following section,
S/N was determined according to

$°P00)/ T | Pate)] -

The results were found to be essentially unaffected
by the use of alternative measures of S/N, and the
particular form used in Eq. (3.11) was chosen to
avoid influence of the exponential decay of the 6

(3.11)



3782 DAVID L. ADAMS
100 T T T
5+ 2
S/IN S/N vs OD diA)
—2.020
dszD
sor 2.015
] 1 1 1

300 350 400 450
0p (*K)

FIG. 5. Signal to noise vs @ for fixedV,=16.0 eV.
Variation of d with ®, is also shown. Again obtained
from deconvolutions of P (z) function of A1(100), 6=10°
intensity spectrum.

function amplitudes upon the measure of signal
weight.

In Fig. 3 is shown a plot of S/N vs d, for fixed
V, and ©,, where d is the uniform interlayer spac-
ing in the A1(100) surface (see below). The figure
contains the results of a large number of deconvol-
utions, in each of which d was held fixed at a par-
ticular value. As can be seen from the figure, the
result is not quite unambiguous since a small peak
is found at 4.02 & in addition to the dominant peak
at 2.01 3.

In this case it is evident that any well-designed
variation procedure would converge to the correct
result, but the fact that the first approximation
obtained from the Southwell step of the deconvolu-
tion is d=2.05 § indicates the advantage of the
Southwell step in accelerating convergence. In less
favorable cases where competitive local maxima
of signal to noise occur, the Southwell step is of
critical importance in starting the solution in the
vicinity of the physically meaningful local maxi-
mum.

In Fig. 4 is shown a plot of S/N vs V, for fixed
9p. The interlayer spacing d was allowed to vary
in obtaining the deconvolutions used to construct
this figure, and the corresponding plot of d
vs V, is also shown. As can be seen, S/N
exhibits a well-defined maximum as a function of
V4, although the dependence is weaker than upon
d shown in Fig. 3. Nevertheless, the dependence
of d upon V, shown in Fig. 4 indicates the need
for an accurate choice of V, to obtain an accurate
value of d.

A plot of S/N vs ©, for fixed V, is shown in Fig.
5. Again a well-defined maximum is obtained. The
value of d was allowed to vary in the deconvolu-
tions, but the plot of d vs ©,, also shown in the
figure, indicates that d depends less critically upon
O, than upon V,, as would be expected.

Thus it has been established that the signal-to-
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noise ratio in the deconvolution depends critically
upon the value of the structural parameters and
strongly upon the values of the nonstructural
parameters, from which it appears that a variation
procedure based on optimization of signal to noise
should be viable.

It should also be noted that although the peak
amplitudes and positions in plots of signal to noise,
such as are shown in Fig. 3-5, depend upon the
values assigned to the variables which are held
fixed, the existence of well-defined maxima is not
critical upon the assigned values. For example,
the fixed values of ©, and V, used in constructing
Figs. 4 and 5, respectively, are different from the
optimum values, given in Table IV, which were
obtained from an unrestricted deconvolution for
the particular intensity spectrum considered here.
It can be expected, therefore, that the variation
procedure should be stable in the case of poorly
chosen first guesses for V, and ©,.

IV. ANALYSIS OF EXPERIMENTAL DATA

In this section we present the results of applying
the new version of the transform-deconvolution
method to the analysis of experimental data for
Cu(100),?" Ni(100),%2 A1(111),%® and A1(100).*-!3 In
comparing the quality of the results obtained for
these systems it should be noted that the accuracy
of the input data varied widely. For A1(100) and
Cu(100), an accurate representation of the original
experimental data was available, in the former
case from our work,''-'* and in the case of Cu(100)
through courtesy of Burkstrand®' of General
Motors. The data for Ni(100) and Al(111), how~-
ever, were obtained from photographic enlarge-
ments of figures published in the literature, and
hence were a less faithful representation of the
original spectra.

We note that the energy ranges of the data used
in the analysis were 15-260 eV for Cu(100),
15-240 eV for Ni(100), 10-200 eV for Al(111), and
10-240 eV for A1(100).

In the first analyses of the above systems, the
deconvolution procedure was constrained to pro-
duce a single interlayer spacing. The propriety
of this constraint is discussed later.

The results of the deconvolutions are summariz-
ed in Tables I-IV, which contain the output values
for a4, V,, ©p, i, and S/N for a number of diff-
erent intensity spectra from each surface. Com-
puter deconvolutions corresponding to the best and
worst cases in terms of S/N for each system are
shown in Figs. 6-9.

To a large extent the content of Tables I-IV and
Figs. 6-9 is self-explanatory. Several points de-
serve emphasis, however. As can be seen from
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TABLE I. Deconvolution output parameters for
Cu(100).

TABLE III. Deconvolution output parameters for
Al(111).

(deg) (deg) (A (ev) (K) (A1) (arb)
10 0 1.81 12.0 181 0.24 59
10 5 1.81 11.8 180 0.25 62
10 10 1.80 13.0 198 0.32 65
10 45 1.78 10.0 190 0.57 50
12 0 1.81 12.0 170 0.32 57
12 10 1.81 12.0 176 0.40 54
12 45 1.78 12.1 195 0.49 47
a 1.80 11.9 184 0.36

+0.01 +0.8 +10 +0.11

2Weighted mean values.

Figs. 6-9, even in the cases of worst signal to
noise, the 5 function signal is well distinguished
from the noise. From Tables I-IV, it can be seen
that analyses of different intensity spectra from
the same surface gave very consistent values for
the interlayer spacing d and for the inner potential
V,o- The spread in output values of ©, and u is
generally higher, and systematic trends in the
values of these parameters with angle of incidence
occur in some cases. A completely consistent
explanation for these trends cannot be found, but
in the cases of Ni(100) and A1(100), for example,
it is notable that ©, decreases with increas-
ing angle of incidence. This behavior might
be attributed to the increasing sensitivity to the
outermost layers of the surface with their larger
thermal vibrations.

The mean values of the output parameters for
the four systems, weighted according to the signal
to noise, are given in Table V, which also contains
values of the bulk interlayer spacings, and the
values of the volume-averaged inner potentials de-
termined in the band-structure calculations of the
crystal potentials?¥+*® which were used to derive

TABLE II. Deconvolution output parameters for
Ni(100).

6 ) d Vo ©p u S/N
deg) (deg) (A) (eV) CK) (&) (arb)

6 0 1.77 16.0 328 0.69 54
8 0 1.79 14.1 284 0.43 56
10 0 1.78 16.0 320 0.32 61
12 0 1.79 15.9 280 0.24 70
14 0 1.78 15.8 246 0.34 56

a 1.78 15.6 291 0.39
+0.01  +0.7 +29 0.15

0 ¢ d V, ©p M S/N
(deg) (deg) (A (V) CK) (A™) (arb)

10 0 2.25 18.0 322 0.43 86
15 0 2.27 14.8 360 0.42 72
20 0 2.25 17.0 310 0.40 73
25 0 2.25 20.8 338 0.51 85
10 30 2.27 16.0 327 0.43 95
15 30 2.26 18.0 369 0.42 79
20 30 2.31 16.0 325 0.38 87
25 30 2.31  20.9 350 0.44 59
a 2.27 17.6 337 0.43

+0.02 £2.0 +19 £0.04

Weighted mean values.

the scattering phase shifts. It can be seen from the
table that for the (100) planes, the determined
values of the surface interlayer spacing are with-
in +0.02 A of the corresponding bulk spacings. The
output values of the inner potentials are within
+1 eV of the calculated, volume-averaged values
in the cases of A1(100), Al(111), and Cu(100). The
output value for Ni(100) is 2 eV higher than the
calculated value. Finally, the output values for
O) are generally similar to values used in model
calculations for those systems,?!'2%:?" and the val-
ues of the mean free path y are consistent with
experimental measurements.?®

As mentioned previously, in the analyses de-
scribed above the deconvolution procedure was
constrained to produce a single interlayer spacing.
In the case of the (100) planes, the results sum-
marized in Table V indicate that this constraint
was appropriate. In the case of Al(111), however,
the mean value of d corresponds to a 3% contraction of
the surface layer spacing relative to the bulk value.

TABLE IV. Deconvolution output parameters for
Al(100).

0 ¢ d Vo ©p u S/N
(deg) (eg) (A (V) CK) (A (arb)
8 45 2.01 16.0 373 0.28 105
10 45 2.01 16.6 369 0.27 109
12 45 2.02 16.0 350 0.32 88
14 45 2.02 16.0 337 0.39 92
16 45 2.01 17.1 320 0.44 90
18 45 2.01 16.1 327 0.43 75
20 45 2.02 16.0 320 0.47 74

a 2.01 16.3 345 0.36

+0.01 +0.4 21 +0.08

2 Weighted mean values.

2 Weighted mean values.
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FIG. 6. Deconvolutions of P (z) functions of intensity
spectra for Cu(100), corresponding to the best and worst
cases in terms of signal to noise of the seven intensity
spectra which were analyzed (see Table I). The decon-
volutions contain 6 functions at multiples of the uni-
form interlayer spacing in the Cu(100) surface, together
with a random noise component. The exponential decay
of the 6-function series is due to the attenuation of the
electron flux in the crystal, as characterized by the
exponent u.
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FIG. 7. Deconvolutions of P (z) functions of intensity
spectra for Ni(100), corresponding to the best and worst
cases in terms of signal to noise of the five intensity
spectra analyzed (see Table II).
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FIG. 8. Deconvolutions of P (z) functions of intensity
spectra for Al(111), corresponding to the best and worst
cases in terms of signal to noise of the eight intensity
spectra analyzed. For this surface the constraint of a
uniform interlayer spacing is probably not justified since
the derived value of 2.27 & is ~ 3% less than the bulk
value of 2.34 A (see Table III and following text).
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FIG. 9. Deconvolutions of P(z) functions of intensity
spectra for A1(100), corresponding to the best and
worst cases in terms of signal to noise of the seven
intensity spectra analyzed (see Table IV).
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TABLE V. Mean values of output parameters.

d Vo ©p A* dpux  Vigner
Surface  (A) ev) CK) (A (A) (eV)

Al(100) 2.01 16.3 345 5.6 2.025 16.7
Al(111) 2.27 17.6 337 4.7 2.34 16.7
Ni(100) 1.78 15.6 291 5.1 1.76 13.6
Cu(100) 1.80 1.9 184 5.6 1.81 12.4

2Mean free path A=2/pu.

It is of interest therefore to determine if this contrac-
tion is genuine, or if it reflects systematic errors
in the experimental data or the analysis. Accord-
ingly the data for Al(111) and also, for the purpose
of a consistency check, the data for (100) planes
were reanalyzed with the deconvolution procedure
constrained to produce a first interlayer spacing
possibly different from subsequent spacings which
were fixed at the bulk value. For this case the
deconvolution contains two sets of delta functions,
at z =d, + vds and at z.=vd;, where d, is the first
layer spacing.

A typical result for Al(111) is shown in Fig. 10.
The value of the first layer spacing in this example
is 2.24 A compared to the value of 2.25 A obtained
previously (Table III) on the assumption of a uni-
form layer spacing. A complete analysis of the
Al(111) intensity spectra confirmed this result;
the mean value of the first layer spacing being
2.26 A. However, the S/N values obtained in the
second analysis were not significantly better than
in the first. Also, the strong attenuation of the

T T T T

A1(111) ®=0° 6=10°

o
do=2.2¢ A
dg = 2.338A

Po(2)

L dg—
00 AAAL AN, |V—J“_' v
0 20 40 _ 60 80 100

z(;\)

FIG. 10. Typical deconvolution of P (z) function of an
intensity spectrum for Al(111), in which the deconvolu-
tion was constrained to produce sets of § functions at
z=wulg and z=d,+wudg. d, was fixed at the bulk value of
2.338 A, and the first layer spacing d, was allowed to
vary freely.

delta function amplitudes with increasing z led to
less than unambiguous distinction between the vd;
set and the noise (see Fig. 10). Thus, while the
second analysis of the Al(111) data does tend to
confirm the occurrence of a contraction of the first
layer spacing of 3%, it also indicates that resolu-
tion of differences in structural parameters of less
than about 0.1 A may be difficult of achieve without
some ambiguity .

Finally, the reanalysis of the data for the (100)
planes confirmed the result that the first layer
spacing is within +0.02 A of the bulk value. A
typical deconvolution is shown in Fig. 11 for
A1(100). As shown in the figure, the two sets of
delta functions are virtually coincident, although
the value of the first layer spacing was allowed to

vary freely. The values of S/N were essentially
unchanged, as were the output values of V,, 6,
and .

V. APPLICATION OF THE TRANSFORM-DECONVOLUTION
METHOD TO OVERLAYER SYSTEMS

In this section we briefly consider the application
of the transform-deconvolution method to the
more difficult problem of systems containing more
than one kind of surface atom.

For convenience, we consider the case of an ad-
sorbed layer at a distance d, from the first layer
of the substrate which has a uniform layer spacing
ds. This model contains the basic elements of a
multicomponent system and can be discussed with-
out loss of generality. The P(z) function for this
case is given by Eq. (2.6). AsnotedinSec. II, the
main difficulty in the analysis of multicomponent
systems is the fact that even in single-scattering

AL(100) ®=0° © =10
PD(Z)
do = 201 A
ds = 2025 A
le—do
le—ds }
o+ cAcAL A A AAA—
1 vv 1 1 1 1
0 2.0 40 6.0 80 100
z(A)

FIG. 11. Typical deconvolution of P (z) function of an
intensity spectrum for A1(100), in which the deconvolu-
tion was constrained to produce two sets of 6 functions,

as in the caption to Fig. 10, with dg fixed at the bulk
value of 2.025 A.
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theory the structural and nonstructural variables
are not separable.

In a previous article!' we suggested a means for
achieving a separation of variables in the case
where intensity spectra are measured for both a
clean substrate and substrate plus overlayer. De-
fining the respective P(z) functions as P g;5(z) and
Pover (2), then it was proposed!! that a difference
function P ppp(2) be formed by a weighted “sub-
strate-subtraction” procedure

Ppwr(2) =Poygg (2) = a2 Psyp(2) - 6(2) * Fo(2),  (5.1)

involving a variation over o?. From Egs. (2.6)-
(2.9) it follows that

PD[FF(Z)=P50(Z)*Fso(z)+Pos(z) *Fog(z) ’ (5-2)

and this equation can be solved for P, (z) and
P (z) using the procedure described in Sec. III.
While we expect that the substrate-subtraction
procedure might be applicable in many cases, the
necessary assumption that the substrate structure
is unchanged upon adsorption cannot be expected
to be generally valid. Thus a more general ap-
proach is required. The most promising approach
appears to be a modification of the procedure out-
lined in Sec. III for one-component systems. The
modification consists of making an approximate
separation of variables by replacing the individual
atomic scattering factors by an average scattering
factor in the Southwell step of the procedure [see
Egs. (3.5)-(3.7)]. Having obtained a first approxi-
mation to the structural parameters in this man-
ner, the individual scattering factors are used in
the subsequent variational refinement procedure.
To date this approach has been tested satisfac-
torily using calculated single scattering intensities,
but has not yet been applied to experimental data
analysis.

VL. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have described further refine-
ments and applications of the transform-deconvol-
ution method for surface structure determination
by analysis of LEED intensities. As we have in-
dicated, the main advantages of the method are that
it does not require prior assumption of a single
specific model structure, and that it does not de-
mand large computational requirements. These
advantages are gained at the expense of an empir-
ical treatment of multiple-scattering processes
and, in the case of multicomponent systems, an
approximate treatment of the atomic scattering
factors in the first stage of the analysis. Additional

approximations, which are also frequently made in
dynamic model calculations, include the use of
spherical model potentials in generating scattering
phase shifts, the use of an energy-independent
inner potential, and the description of thermal
vibrations by means of a single Debye-Waller fac-
tor. We note that a more accurate treatment of
these factors could be readily incorporated in the
transform-deconvolution method if such a treat-
ment were warranted.

In our judgement, the internal consistency of the
analysis of experimental data for Cu(100), Ni(100),
Al(111), and A1(100) presented in Sec. II suggests
that the approximations mentioned above do not
appear to lead to large systematic errors. We be-
lieve that these results for clean surfaces give
grounds for some optimism as to the success of
future applications to more complex systems.

At its present stage of development, the trans-
form-deconvolution method applies only to the de-
termination of interlayer spacings via analysis of
Fourier transforms of intensity spectra for the
specular diffracted beam. We believe, however,
that its extension to the case of two-dimensional
sections'®~** for the purpose of determination of
layer structure and registry should be quite
straightforward. The additional problem of trunc-
ation of the Fourier sums over % and k in this
latter case is defined by the extent of the experi-
mental data, and should be soluble without the re-
quirement of ancillary physical information con-
cerning the system under study.

Finally, we should like to comment that the
study of direct methods of analysis of LEED is a
relatively new and largely unpopulated field. In
this article we have argued that the development of
rapid and economical direct methods, to at least
provide a first approximation to surface structure
determination for subsequent refinement via model
calculations, is vital if the full potential of LEED
is to be realized. In discussing the transform-de-
convolution method in some detail we have hoped to
show that the use of direct methods is feasible and
thereby to encourage their further study and devel-
opment.
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